TEC-0064

US Army Corps
of Engineers

RADIUS: Model-Based Rt

Optimization

Thomas M. Strat
Pascal V. Fua
Lynn H. Quam

SRI International

333 Ravenswood Avenue
Menlo Park, CA 94025-3493

July 19956

Approved for public release; distribution is unlimited.

Prepared for:

Advanced Research Projects Agency

3701 North Fairfax Drive
Arlington, VA 22203-1714

Monitored by:

U.S. Army Corps of Engineers
Topographic Engineering Center

7701 Telegraph Road

Alexandria, Virginia 22315-3864

DTI& QUALITY IKCPECIED 8

Destroy this report when no longer needed.
Do not return it to the originator.

The findings in this report are not to be construed as an official Department of the Army
position unless so designated by other authorized documents.

The citation in this report of trade names of commercially available products does not
constitute official endorsement or approval of the use of such products.

Form Approved
OMB No. 0704-0188

REPORT DOCUMENTATION PAGE

Public reporting burden tor this collection of intormation is estimated 10 dverage | hour per response, tNCIudIng the time 1Or reviewing instructions, .

gathering and maintaining the data needed. and completing and reviewing the collection of information. Send comments reqgarding tr?:s bum"" gl:‘l‘f:fg:\gn;-g&:? ;ma sm.;rces.
coliection of information, including suggestions for reducing this burden, 10 Washinglon Headquarters Services, Duredout:?or Information Operations and Reports ,2:‘;“"? this
Oavis Highway. Suite 1204, Arlington, VA 22202-4302. and 10 the Office of Management and Budqet, Paperworx Reduction Project (0704-0188), Washington, OC 20503 Jeflenon

1. AGENCY USE ONLY (Leave blank) |2. REPORT DATE 3. REPORT TYPE AND DATE§9C£VERED

July 1995 Second Annual Oct. 1 Apr. 1995

4. TITLE AND SUBTITLE S. FUNDING NUMBERS

RADIUS: Model-Based Optimization

DACA76-92-C-0034

6. AUTHOR(S)

Thomas M. Strat Lynn H. Quam

Pascal V. Fua
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORCGANIZATION

SRI International REPORT NUMBER

333 Ravenswood Avenue
Menlo Park, CA 94025-3493

9. SPONSORING/ MONITORING AGENCY NAME(S) AND ADDRESS(ES)
Advanced Research Projects Agency

3701 North Fairfax Drive, Arlington, VA 22203-1714

10. SPONSORING / MONITORING
AGENCY REPORT NUMBER

U.S. Army Topographic Engineering Center TEC-0064

7701 Telegraph Road., Alexandria, VA 22315-3864

11. SUPPLEMENTARY NOTES

123. DISTRIBUTION / AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

Approved for public release; distribution is unlimited.

13. ABSTRACT (Maximum 200 words)

The construction and use of 3D models of military and industrial sites will allow revolutionary advances in the
speed, confidence, and range of analytical techniques with which an Image Analyst (IA) develops and reports
intelligence information. This SRI research project, in support of the RADIUS Program, seeks to increase the
speed and accuracy with which site models can be constructed from current imagery by developing a new family
of image understanding (IU) techniques, and by developing a novel way for an IA to employ them.

14. SUBJECT TERMS 15. NUMBER OF PAGES

71

Computer vision, aerial image analysis, RADIUS, optimization, snakes
16. PRICE CODE

17. SECURITY CLASSIFICATION
OF REPORT

UNCLASSIFIED

18. SECURITY CLASSIFICATION
OF THIS PAGE

UNCLASSIFIED

19. SECURITY CLASSIFICATION
OF ABSTRACT

UNCLASSIFIED

20. LIMITATION OF ABSTRACT

UNLIMITED

NSN 7540-01-280-5500

Standard Form 298 (Rev. 2-89)
;;?c‘rl;ged by ANSI Std. Z39-18

Accesion For

NTIS CRA&I W
Contents DTIC TAB O

Unannounced O
List of Figures Justification
List of Tables By

Distribution/

Preface Availability Codes
1 Introduction ... | Avail and/or
Dist Special
2 Research Goals
3 Model-Based Optimization ' /
3.1 Smakes e,
3.2 Objective Function
3.2.1 2-D Linear Snakes
3.2.2 MagneticSnakes L
3.3 Topology o i
3.3.1 3-DLinear Snakes
3.3.2 Ribbon Snmakes
3.4 Optimization e
3.4.1 Optimizing smoothsnakes
3.4.2 Optimizing polygonal snakes
3.4.3 Optimizing rectilinear snakes
3.4.4 Optimizing 3-Dsnakes.
3.5 Inmitial Conditions e e
3.6 Snake Genes. i
3.7 Smake Species e e e
3.8 Snake Examples e
4 Context-Based Vision
4.1 Motivation e
4.2 Background
4.3 Implementation Choices
43.1 Context Sets e
43.2 Context Tables
433 Context Rules
4.4 Context-Based Architecture Specification
441 Terms L e e
442 Predicates e e e,
443 Rules
444 RulePackets
4.5 Examples
4.6 Discussiono e e e,

5 Knowledge-Base Acquisition

iii

6 Data Sets from TEC 32

6.1 Imstallation in RCDE . . . o . . . i i i i i e e e e e e e e e e e e 32
6.2 Initial Site Model Construction « « v v v v v it e e e e e e e e e e 33
7 Summary 33

iv

List of Figures

Q0 1 O Ut & W N —

= e O
N = O

Examplefrom Site 1 16
Examplefrom Site 2 17
Documentation of compound terms. 21
Documentation of some predicates. 22
Documentation of the top-level rules. 23
The Chain Rule. 24
The rule packet for the Road Tracker algorithm. 25
A set of facts used to answer an example query. 26
Image of building complex to be modeled. 35
Wireframe model of building complex. 36
Shaded perspective view of building complex. 37
Synthetic perspective image of building complex. 38

List of Tables

1 Terms used in the objective function to define various snake species 4
2 Snakeparameters e 12
3 Snake species as defined by theirgenes. o L. 13
4 Snake species sorted by featureclass. oo oo L. 14

vi

PREFACE

This research is sponsored by the Advanced Research Projects Agency (ARPA) and monitored by
the U.S. Army Topographic Engineering Center (TEC) under Contract DACA76-92-C-0034, titled,
"RADIUS: Model-Based Optimization (Second Annual Report)." The ARPA Program Manager is Dr.
Oscar Firschein, and the TEC Contracting Officer’s Representative is Ms. Lauretta Williams.

vii

1 Introduction

The construction and use of 3D models of military and industrial sites will allow revolutionary
advances in the speed, confidence, and range of analytical techniques with which an Image
Analyst (IA) develops and reports intelligence information. This SRI research project in support
of the RADIUS Program seeks to increase the speed and accuracy with which site models can
be constructed from current imagery by developing a new family of image understanding (IU)
.. techniques, and by developing a novel way for an IA to employ them.

The research is proceeding on two fronts simultaneously:

¢ Extending the Model-Based Optimization algorithms; and
» Developing a context-based approach to image analyst control of IU algorithms.

This report describes activities during the past 12 months directed toward advancing the
state-of-the-art in these two areas.

2 Research Goals

Model-Supported Exploitation (MSE) is the analysis of imagery (by human or computer) with
the aid of 2D and 3D models of the scene [1, 2, 3]. There are two major scientific problems that
must be solved for MSE to be a viable concept for use in an operational intelligence setting. A

successful MSE system must have: e

e an interface that enables the image analyst (IA) to easily specify what he wants the
machine to do; and

s

i 2
e a set of algorithms that enables the machine to perform: the tasks posed by the IA.

While the majority of research in IU has been concerned with fully automated algorithms
for interpreting images, the Perception Group at SRI has made the design and implementation
of semiautomated systems a major goal. As a result, SRI has made significant progress toward
achieving the goals listed above.

¢ The RADIUS Common Development Environment (RCDE), which is based on the SRI
Cartographic Modeling Environment (CME), contains many innovative mechanisms for
allowing the user to visualize scene geometry and to control the invocation of site modeling
tools. For example, when a user points to something in an image, the ambiguity of his
gesture is resolved through the use of a narrowly constrained geometric context. The
RCDE is the framework to which we have added new constructs that have been designed
especially for model-supported exploitation (4, 3].

o Model-Based Optimization (MBO) algorithms, in which an objective function is opti-
mized to determine the best fit with image data, provide an ideal basis for semiautomated
site modeling. The so-called “snake” technology is a particular example of model-based
optimization, named for the way the curves wiggle during optimization {6, 7]. SRI has de-
signed and implemented numerous techniques for finding such objects as roads, buildings,
vegetation, and rivers. The ability to fit a deformable object model to multiple images

simultaneously, and the employment of continuation methods to avoid local minima. are
examples of our advances {8, 9, 10]:°

SRI is extending the MBO technology to provide the capability of extracting many different
object classes under a wide variety of imaging and scene conditions. When integrated into
the RCDE, this technology will constitute an operational language tailored to the needs of the
intelligence analyst.

'3 Model-Based Optimization

Model-Based Optimization (MBO) is a paradigm in which an objective function is used to
express both geometric and photometric constraints on features of interest. A model of a
feature (such as a road, a building, or coastline) is extracted from an image by adjusting the
model until 2 minimum value of the objective function is obtained. The optimization procedure
vields a description that simultaneously satisfies (or nearly satisfies) all constraints, and, as a
result, is likely to be a good model of the feature.

Implementation of a Model-Based Optimization algorithm requires the specification of four

components.

Objective function: A mathematic function that expresses the preferred geometric and pho-
tometric properties to be exhibited by the feature.

Topology: The geometric primitive used to regresent the feature, which thereby limits the
class of features that can be modeled.

Optimization: The procedure to be employed for finding a configuration of the feature that

minimizes (locally) the objective function. L

Initial conditions: The configuration of the feature to be used as the starting point by the
optimization procedure.

Our research is addressing all four of these areas, in seeking to find instantiations of the
MBO paradigm that provide effective means for extracting features of interest to the RADIUS

Program.
The applicability of MBO is currently limited by the expressive power of terms in the

objective function and by the difficulty of optimization. This project is extending the range of
objects that can be modeled within the MBO paradigm, and is developing suitable optimization

procedures to support them.
With these extensions, the MBO technology can be used:

1. interactively, to extract objects that are of special interest or that were missed by a fully
automated system, or

2. automatically, to extract from an image all objects of a given type.

During the first year of this project, we implemented MBO algorithms for extracting roads,
railroads, and other linear features from overhead imagery. Evaluations performed with oper-
ational imagery have shown that extraction of such features using MBO reduces the number

2

of vertices that must be specified to one-third of those required by manual extraction. Further
improvement in the optimization procedures is needed to increase the range of features that
can be extracted.

3.1 Snakes

Snakes were originated by Terzopoulos, Witkin, and Kass [6, 7] and have since given rise to
a large body of literature. Further research by Fua and Leclerc has extended the theory and

increased its practicality [11].

A 2-D snake is treated as a polygonal curve C defined by a set S containing n equidistant
vertices

5={(2:,' i) t=1,...,n}

that can deform itself to optimize an objective function £(C).
Formally we can write the energy £(C) that the snake minimizes as a weighted sum of the

form
= Z Ai&i(C) (1)

where the magnitudes of the £; depend on the specific radiometry and geometry of the particular
scene under consideration and are not necessarily commensurate. In order to determine the
values of the A; weights in a context-specific way as opposed to an image-specific one, we have
found it necessary to normalize out those influences. The dynamics of the optimization are
controlled by the gradient of the objective function. We have therefore found that an effective

v

way to achieve this result is to specify a set of normalized weights Al such that

Z Ai=1.

b_ .
1<ign i

)
[

The A; define the relative influences of the various components, and we use them to compute
the A; as follows:

A
A S
| VE(S°) |
where S° is the estimate at the start of each optimization step. In this way we ensure that the
contribution of each &; term is roughly proportional to the corresponding A/ independent of the
specific image or curve being considered.

A =

3.2 Objective Function

The objective function is used to represent the constraints that an MBO primitive is ex-
pected to obey. Each term £(C) in the objective function (Equation refeq:sum) encodes a
particular geometric or photometric constraint. Some of the more commonly used terms are
listed in Table 1. A precise description of the simplest form of snake is described in Section 3.2.1.

Table 1: Terms used in the objective function to define various snake species

Gene name Gene value Description e
Photometry Edge Prefers to align itself with step edges in the intensity
image
Line Prefers to align itself with thin lines (dark or light)
Width Thin. An infinitessimally thin curve
Fixed-width A pair of parallel curves separated by a fixed distance
Variable-width | A pair of approximately parallel curves whose sepa-
ration can vary at each vertex
Closure Open An arbitrary,curve represented by a sequence of ver-
tices ~u®
Closed The boundary of a region denoted by a sequence of
vertices in which the first.and last vertex are identical
Curvature Smooth-curve | A sequence of closely spated vertices with restrictions
‘ on allowable smoothness
Polygonal A sequence of vertices connected by straight lines with
no smoothness constraint
Rectilinear A sequence of vertices connected by straight lines that
intersect at right angles (in 3-D)
Dimensionality | 2-D A sequence of 2-D vertices in the image plane
3-D A sequence of 3-D vertices whose projection in one

or more images satisfies the photometric constraints

3.2.1 2-D Linear Snakes

A 2-D snake is treated as a polygonél' curve C defined by a set S containing n equidistant
vertices

Sz{(l'iyi),i=l,...,n} (2)
that can deform itself to maximize the average edge strength along the curve G(C):

icl
G(C) = 7 [IV ds)

where I represents the image gray levels, s is the arc length of C, f(s) is a vector function
mapping the arc length s to points (z,y) in the image, and |C| is the length of C. In practice,
G(C) is computed by sampling the polygonal segments of the curve at regular intervals, looking
up the gradient values [VZ(f(s))| in precomputed gradient images, and summing them up. The
gradient images are computed by gaussian smoothing the original image and taking the z and y
derivatives to be finite differences of neighboring pixels. It has been shown (11] that the points
along a curve that maximizes G(C) are maxima of the gradient in the direction normal to the
curve wherever the curvature is small. Therefore, such a curve approximates edges well except
at corners. Unfortunately, G(C) is not convex functional and to perform the optimization,
following Terzopoulos et al., we minimize an energy £(C) that is a weighted difference of a
regularization term £p(C) and of G(C):

EC) = Apép(C)— AgG(C) (4)
Ep(C) = wm Z(fri —zin1)? Ry — yie1)?
+ W2 2(21‘; —zio1 — Ti1)? + (2w ~ V-1 - Yit1)? (5)

b

The first term of £p approximates the curve’s tension and:the second term approximates the
sum of the square of the curvatures, assuming that the vertices are roughly equidistant. In
addition, when starting, as we do, with regularly spaced vertices, this second term tends to
maintain that regularity. To perform the optimization we could use the steepest or conjugate
gradient, but it would be slow for curves with large numbers of vertices. Instead, it has proven
much more effective to embed the curve in a viscous medium and solve the equation of the
dynamics

9 dS
5§+07{ = 0, (6)
WSS T 85 T a8

where £ is the energy of Equation 4, o the viscosity of the medium, and S the state vector of
Equation 2 that defines the current position of the curve. Since the deformation energy £p in
Equation 5 is quadratic, its derivative with respect to S is linear and therefore Equation 6 can
be rewritten as

&
KsSi+ a(Si— Si1) = - =—
(55t + a5 t-1) a5 .
o0&
¢(K5+al)5¢ = Clst_1—£s (7)
t—1

where o€
.Uep -
— = K58S.
B 7
and Ks is a sparse matrix. Note that the derivatives of £p with respect to z and y are
decoupled so that we can rewrite Equation 7 as a set of two differential equations in the two

spatial coordinates

. ag
(K+ O!I)Xt = a.Xt_l + -a—f Xis
G
(K+allYy = ol + 5y Yiet

where K is a pentadiagonal matrix, and X and Y are the vectors of the z and y vertex
coordinates. Because K is pentadiagonal, the solution to this set of equations can be computed
efficiently in O(n) time using LU decomposition and backsubstitution. Note that the LU
decomposition need be recomputed only when o changes.
In practice is computed with an initial step size Ap, expressed in pixels, and the following
formula computes the viscosity:
ven |5 ®)

A, |85]

where n is the number of vertices. This ensures that the initial displacement of each vertex
is on the average of magnitude A,. Because of<the non linear term. we must verify that the
energy has decreased from one iteration to the next. If, instead, the energy has increased, the
curve is reset to its previous position, the step size is decreased, and the viscosity recomputed
accordingly. This is repeated until the step size becomes lq'sé;'than some threshold value. In
most cases, because of the presence of the linear term that: propagates constraints along the
whole curve in one iteration, it takes only a small number of iterations to optimize the initial
curve.

The snakes described above have proved very effective at modeling smooth curves. Some
objects, however, such as buildings, are best modeled as polygons with sharp corners. They
can be handled in this context by completely turning off the smoothness term. Such objects
typically have a relatively small number of corners, and the optimization is performed using a
standard optimization technique.

3.2.2 Magnetic Snakes

Snakes usually converge to the intended image feature whenever the initial seed is “close enough”
to the intended result. However, situations inevitably arise in which the snake will “get stuck”
on some nearby feature corresponding to a true but unwanted local minimum of the objective
function, thus preventing the extraction of the intended feature. In our current implementation,
the user has no recourse except to abort the optimization and try again, either with a new seed
curve, or with a new set of snake parameters.

A more natural mechanism for the user to interact with snakes is to allow him to use a
mouse-controlled cursor to nudge the snake off the unintended feature. We have extended our
formulation of the snake equations to include a term related to the length and direction of the

.

vector from each snake vertex to the mouse-cursor. In this way, we have simulated a magnetic
force between the cursor and the snake which allows the user to push the curve in a desired
direction.

3.3 Topology

An ordinary snake, represented as a polygonal curve defined by a sequence of 2-D vertices,
is useful for modeling such features as vegetation boundaries and coastlines. A wider range

“of objects can be modeled by using other topological representations. For example, closed

polygonal curves can model regions such as lakes and parking lots. In this section we describe
two additional topologies that we have introduced: 8-D curves, which can be instantiated using
multiple views of a feature; and ribbon-snakes, in which each vertex has a width in addition to
its position, which is useful for modeling roads and rivers.

3.3.1 3-D Linear Snakes

Snakes can be naturally extended to three dimensions by redefining C as a 3-D curve with
n equidistant vertices S = {(z; ¥ 2}, ¢ = 1,...,n} and considering its projections in a
number of images for which we have accurate camera models. The average edge strength G(C)
of Equation 3 becomes the sum of the average edge strengths along the projection of the curve
in the images under consideration, and the regularization term of Equation 5 becomes

Ep(€) = m Z(xi —zim1)? + (yi — yf-1)_ij- (zi — zi-1)? (9)

+ e 3 (22— wict — zis1)? F (i — -1 — Yit1)? + (22 — Zim1 — Zi4a)’
‘. ,

'
[
|

Wl .
Since the derivatives of £p with respect to z, y, and z are'still decoupled, we can rewrite
Equation 7 as a set of three differential equations in the three spatial coordinates:

oG
(K + aI)Xt = &Xg_1 + ‘ay Xy
oG
(K+al})Y: = aYi + ¥ Vi
)) oG
(I\ + C!I)Zt = aZt_.l + OZ Zes

where X,Y, and Z are the vectors of the z,y, and z vertex coordinates.

The only major difference with the 2-D case is the use of the images’ camera models. In
practice, G(C) is computed by summing gradient values along the line segments linking the
vertices’ projections. These projections, and their derivatives, are computed from the state
vector S using the camera models. Similarly, to compute the viscosity, we use the camera
models to translate the average initial step Ap, a number of pixels, into a step A,, expressed
in world units and use the latter in Equation 8.

3.3.2 Ribbon Snakes

9-D snakes can also be extended to describe ribbon-like objects, such as roads, in aerial images.
A ribbon snake is implemented as a polygonal curve, forming the center of the road. Associated

with each vertex i of this curve is a width w; that defines the two curves that are the candidate
road boundaries. The state vector S becomes the vector § = {(ziyiwi)}, =1, n} and the

average edge strength is the sum of the edge strengths along the two boundary curves. Since
the width of roads tend to vary gradually, we add an additional energy term in the form

Ew(C) = D (wi—wiz)’ (10)

t

Ew LW,

= W

where W is the vector of the vertices’ widths and L a tridiagonél matrix. The total energy can
then be written as

£C) = Ap€p(C) + AwEw(C) — AcG(C)

and at each iteration the system must solve the three differential equations:

ag
(K + aI)Xg = O!Xt_]_ + 5,—X. Xoos
oG
(K +aI)Yt = al-/i:l + W Yoos
, o 0g
(I\ + aI)Wt = aWi1 + -B—W Wees

]
'

N Y e
by ¢

2-D ribbons can be turned into 3-D ones in exactly the same way 2-D snakes are turned

into 3-D ones. The state vector S becomes the vector § = {(z: ¥i z w;)}, i=1,...,n} and at

each iteration the system must solve four differential equations, one for each coordinate.

3.4 Optimization

A traditional snake can be described as a curve C that can deform itself to minimize an energy
term that is the sum of a photometric energy term that attracts it towards edges, and a
regularization term that enforces geometric constraints. In our implementation we take the
photometric energy £p(C) to be

1 il
£p(C) =~ [IVI(E(s))] ds
, ICl Jo
where Z is the image gray-level, s the curvilinear abscissa along the curve C and [C| its length.
In practice £p(C) is discretized and can be written as a function of the z and y coordinates of

the snakes vertices.

3.4.1 Optimizing smooth snakes

When dealing with smooth curves, the deformation energy can be taken to be quadratic so that
the optimization proceeds by solving at every time-step a linear system of equations of the form

(K+(v+w)I) Xi = (v+2u) Xeoy — pXe2 + Fx
(K+(y+p)I) Yo = (v+2¢) Yiy - pYey + Fy

_ where K is a stiffness matrix, X; and Y; are the vectors of the z and y coordinates of the snakes

vertices at time ¢, Fx and Fy are the derivatives of £p with respect to X and Y, and + and
p are mass and viscosity coefficients. Solving this system of equations using LU decomposition
tends to propagate constraints along the whole curve in one iteration. As a result, convergence
is typically achieved within a few iterations provided the starting point is relatively close to the
desired answer. -

For comparison’s sake we have attempted to optimize the snake’s objective function using
conventional conjugate gradient. The propagation of constraints along the snakes is much slower
and, as a result, the convergence properties are almost systematically much worse.

3.4.2 Optimizing polygonal snakes

Polygonal snakes typically have fewer vertices than smooth snakes, but obey no specific internal
geometric constraints. For a polygonal curve C, the only energy being optimized is the pho-
tometric energy £p(C). There is consequently no stiffness matrix, and, in this case, conjugate
gradient has proved somewhat superior to regular.zradient descent, however not by much. The
energy landscape is not quadratic, therefore, most of the theoretical benefit of using conjugate
gradient appears to be lost.

Both methods can fail due to the presence of bad local mjnima. To alleviate this problem,
an attempt was made to use simulated annealing by aﬂowiﬁé?the position of the vertices to
move randomly within a given distance of their current position. While this sometimes lets the
snake escape from undesirable local minima, it is typically both slow and unreliable. Providing
the user with easy-to-use tools to nudge the snake out of those minima is a much more effective
approach.

3.4.3 Optimizing rectilinear snakes

Rectilinear snakes are polygonal snakes whose edges are constrained to form ninety degree
angles. In effect for each set of three consecutive vertices, we want to impose the constraint

ci=(zi — Tim1)(Tiv1 — zi) + (i — Yi-1)(Yie1 — ¥i) =0

The simplest way to enforce this constraint is to define a deformation energy of the form
Ep(C) = Z w;c?
i

where the w; are weights. In practice we take them to be

1
((zi = zic1)2 4+ (Ui — 4i=1)?) + ((Zig1 —) + (Yirr — ¥:)?)

w; =

so that the polygon’s sides tend neither to shrink nor to dilate.

We can then optimize a total energy that is a weighted sum of £p and £p. While this
converges for initial positions that are very close to the desired answer, it tends to fail as soon
as the starting point is a bit farther. This stems from a well known problem: to impose the
constraint, the contribution of £p must be large and as a result the optimizer tends to minimize
D, (the geometric constraints) while ignoring £p, (the image information).

To remedy this problem, a simple constrained optimization method was developed that

.seems well suited to the problem. Given a function f of n variables X = {z1,2,,..,2,} to

be minimized under a set of m constraints C(X) = {c1, €2, .., cm}, we form the nxm Jacobian
matrix A,

dc. dem
Ty e dzy
A= ,
elin dem P
dzn °*° Ozn

and perform at every iteration the following two steps.

1. Take a Newton step to project the state variables onto the constraint surface. This is
achieved by solving the linear system

AtAdX = -C(X)
and incrementing X by AdX. X + AdX should be close to the constraint surface because

0=c(X + AdX)9 c(X)+ A*Adz .

2. Minimize f in a direction parallel to the projection of its gradient onto the tangent plane
to the constraint surface. To compute this direction, weifirst solve the linear system

AtAN = AV

and take the direction to be V f — AX. It satisfies our requirement because A is the least-
squares solution of AA = V f and AA\ is therefore the component of V f that is normal to

the constraint surface.

We have used our rectilinear snakes to test this method and have found a notable improve-
ment in convergence properties over the gradient and conjugate gradient methods.

3.4.4 Optimizing 3-D snakes

3-D snakes are those whose vertices are defined by their position in 3-D space and whose
photometric energy is computed by summing the photometric energies of their 2-D projections
in two or more images.

The observations made for the 2-D snakes carry over to 3—D. For smooth curves, the tradi-
tional snake approach to optimization is clearly the best while for 3-D rectilinear snakes, the
constrained optimization method clearly wins. This method has also been used successfully to
enforce a planarity constraint on 3-D polygonal snakes, thereby improving their convergence
properties by reducing the numbers of degrees of freedom.

10

3.5 Initial Conditions

All model-based optimization primitives require an initial configuration to be used as the start-
ing point for an iterative optimization procedure. The initial configuration is important because
it determines which, of the many local minima that may exist in the landscape defined by the
objective function, will be found. Normally, the initial configuration is provided by the user in
an interactive setting. The initial configuration may be coarse, imprecise, and tedious to pro-
vide. Automated means for producing the initial configurations are desired, as are procedures
" that allow the use of less burdensome initializations.

Successful optimization of a convoluted or highly curved image feature requires specification
of a large number of seed points along the length of the curve. While this polygonal approxima-
tion need not be specified precisely, there must be a sufficient number of vertices to prevent the
snake from converging to an undesired local minimum. This behavior clearly reduces the po-
tential benefit from the employment of snakes for modeling roads, rivers, and other curvilinear
features.

Recent work by Walter Neuenschwander at Eidgenossische Technische Hochschule (ETH),
Zurich Switzerland and Pascal Fua at SRI, has led to the development of a new optimization
procedure that reduces the required number of seed points. A preprint of a technical paper
describing the approach is included as appendix A. The procedure requires only the designation
of the endpoints of the curve (and their tangents), and attempts to find the best image curve
connecting the endpoints. The optimization proceeds in sequential fashion from the endpoints
toward the center, taking image constraints into account first, only at the extremities, and
then, progressively toward the center. If the evalzation of this approach (which has yet to be
conducted) is promising, this technique should significantly reduce the length of time required
to extract 3D models of roads, rivers, coastlines and railroad tracks for inclusion in RADIUS
site models. P

Vi

3.6 Snake Genes

The parameters associated with implementation of the snake algorithm are shown in Table 2.
The approach to defining snake species has been to identify a number of terms to be included
in the snake’s objective function (Equation 1). Each term imparts a particular bias upon the
snake, typically toward a particular geometric configuration or with an affinity for certain image
structures. The terms can be mixed and matched, thereby allowing the definition of a large
number of individual species through a combination. These individual objective function terms
are viewed as genes; their presence or absence determining the makeup of the individual snake.
Table 1 lists the objective function terms (the genes) and the most useful of their possible
values.

3.7 Snake Species

The snake genes listed in Table 1 are the building blocks for assembling snakes that are tailored
to the extraction of particular feature classes. By considering all possible combinations of snake
genes, we have identified the features that can be extracted.! The results of that process are

'Even though the appropriate constraints can be modeled mathematically, effective mechanisms for optimizing
the objective functions may not exist. Continuing research is devoted to finding optimization procedures that

11

Table 2: Snake parameters

Snake parameters

Description

Type of snake
Smoothing term
Optimization procedure

Fixed endpoints
Gaussian smoothing
Initial step size

Stick length
Smoothness constraint

Width constraint

Curvature/tension ratio

Snakes can model smooth, polygonal or ribbon curves
Whether or not to enforce a smoothing constraint
Gradient descent, conjugate gradient, simulated annealing,

The endpoints of the snake can be either fixed or not
Size of the gaussian mask used to compute image gradients
A, pixel step size of Equation 8 used to compute the initial
viscosity
Initial intervertex spacing of the snake, in pixels

'p weight of the deformation cofnponent, Equation 5

iy weight of the width component, Equation 10

Relative contribution of tension and curvature, Equations 5

and 9

summarized in Table 3.
The species of snake is denoted by a sequence of these four characters:

_d'dd

1. Curvature: = Smooth-curve

P = Polygonal
R = Rectilinear i f
2. Closure: O = Open Pt
' C = Closed
3. Width: T = Thin

F = Fixed-width

V = Variable-width
E = Edge

L = Line

4. Photometry:

For example, SOTE denotes a smoothly curved, open-ended, thin snake with an affinity for
aligning itself with edges in the image. All of these species can be instantiated as either 2-D
snakes (for use with monocular imagery), or as 3-D snakes (for use with stereo pairs or other
multiple images simultaneously).

Table 4, identical to Table 3, is reorganized by feature class. Table 4 shows the snake
species that are applicable for each feature of interest to an image analyst. It illustrates the
wide range of features that can be extracted by using snakes, however there are additional
features for which no currently defined snake species is suitable. Additional species for some of
these classes (e.g., fuel storage tanks) could be defined, however the effort is not justified.

work reliably for the snake species listed in the table.

12

Snake species as defined by their genes.

Table 3:

Species | Feature classes

SOTE | Vegetation boundary, coastline, ridgeline
SOTL | Drainage, road in low-res imagery, wall
SOFE | Railway bed

SOFL | Railroad track, highway lane
SOVE | Road, highway, stream, river
SOVL | Road, highway

SCTE | Forest, field, lake, pond

SCTL Lake, pond

SCFE | Track

SCFL | -

SCVE | -

SCVL | -

POTE | Fence, retaining wall, pier

POTL | Fence, powerline, telephone wire, pipeline
POFE | Runway, canal

POFL | Powerlines

POVE | Street, sidewalk* * *

POVL | Street, sidewalk

PCTE | Parking lot, storage area, pasture
PCTL | - G
PCFE | - L
PCFL | -

PCVE | -

PCVL | -

ROTE | -

ROTL | -

ROFE | -

ROFL | -

ROVE | -

ROVL | -

RCTE | Roof, parking lot, pier

RCTL | Roof, parking lot

RCFE | -

RCFL | -

RCVE | -

RCVL | -

13

Table 4: Snake species

sorted by feature class.

Feature Snake species

Canal POFE

Coastline SOTE

Drainage SOTL

Fence POTE, POTL

Field SCTE

Forest SCTE

Highway SOFL, SOVE, SOVL
Lake SCTE, SCTL
Parking lot PCTE, RCTE, RCTL
Pasture PCTE

Pier POTE, RCTE
Pipeline POTL

Pond .SGTE, SCTL
Powerline POTL, POFL
Railroad track SOFL

Railway SOFE .
Ridgeline SOTE "y
River SOVE :

Road SOTL, SOVE, SOVL
Roof RCTE, RCTL
Runway POFE

Sidewalk POVE, POVL
Storage area PCTE

Stream SOVE

Street POVE, POVL
Telephone wire POTL

Track SCFE

Vegetation boundary | SOTE

Wall SOTL, POTE

14

3.8 Snake Examples

Figures 1 and 2 show sub-images of two sites we have used in our tests. A site consists of
several images, generally aerial images of dimensions greater than 1000 x 1000 pixels. The two
test sites differ from on another. The first is a mountainous rural area with several industrial
facilities (Figure 1.a), while the second is an urban area on flat terrain (Figure 2.a).

Examples of the use of two of our snake species are illustrated by the following figures.
Figures 1.b and 2.b show curves used as seeds in the snake optimization process. Figures 1.c

“"and 2.c show the results of the optimization.

The task illustrated by Figure 1 is to extract the boundaries of the dirt road. From Table 4
we find that the appropriate snake species are SOTL, SOVE, and SOVL. SOVE was used
because it is a smooth, open-ended curve with variable width demarked by step edges in the
intensity image. SOTL was not used because it is only appropriate for roads appearing in
low-resolution imagery. SOVL was not used because the sides of the road are characterized by
a change in intensity rather than stripes along the boundaries. Eventually the species and its
parameters will be chosen on the basis of context. It is currently done manually. The parameters
actually used to produce the road model portrayed in Figure 1.c are listed in Figure 1.d.

In Figure 2, the task is to extract a precise boundary of the roof. The applicable species
(from Table 4) are RCTE and RCTL. RCTE was used because the appearance of the roof
perimeter in the image is characterized by step edges better than by thin lines. Although the
building boundaries presented in Figures 2.b and 2.c appear similar, careful inspection reveals

that there are significant differences between the two — the optimized version is much more
precise than the sketch.)

L
JRRr
Ry

15

. ;’,dd

| Parameters | Values |
Type of snake SOVE
Fixed endpoints true
Gaussian smoothing 2
Initial step size 2.0
Stick length 10
Smoothness constraint | 0.6
Width constraint 0.5
Curvature/tension ratio | 1.0

(d)

Figure 1:
(a) Example of images of the first test site. (b) Ribbon seed curve. (c) Snake-opimized ribbon

curve. (d) Parameters used.

16

- GoR

| Parameters | Values |

Type of snake RCTE

i Fixed endﬁb’ints not used
Gaussian smoothing 1
Initial step size 2.0
Stick length not used
Smoothness constraint | not used
Width constraint not used
Curvature/tension ratio | not used

(d)

Figure 2:
(a) Example of images of the second test site. (b) Closed 2-D curve. (c) Snake-opimized 2-D
curve. (d) Parameters used.

17

4 Context-Based Vision

Developers throughout the RADIUS Program are devising IU algorithms for use in site-model
construction and change detection [13, 14, 15, 16]. SRI, is investigating the design of an ar-
chitecture that can be used as the basis to control the invocation of IU algorithms for feature
extraction. The key research question is whether sufficient contextual constraints are available
to choose the algorithms and parameters that are necessary for site model construction.
.. The approach has been to apply the context-based architecture incorporated in (coNDOR)?,
a system that automatically constructs scene models of natural terrain from ground-level views.
The semiautomated nature of RADIUS allows access to additional sources of contextual con-
straints that were not available to CONDOR. The CONDOR mechanisms are being adapted to
better suit the interactive nature of RADIUS. A technical paper on the current state of that
research was published in the Proceedings of the 1993 ARPA IU Workshop [17].

This portion of work was originally scheduled to be the focus for Year 3 of the project,
however, its schedule has been accelerated to allow early incorporation into the RADIUS Phase 2

Testbed.

4.1 Motivation

Thirty years of research in image understanding have produced an enormous number of com-
puter vision algorithms, many of which have demonstrated reliable performance at solving
particular tasks in restricted domains, however, the development of computer vision systems
that are reliable in more general circumstances.lids proved elusive. It is in response to this
situation that a framework is proposed within which computer vision algorithms of specialized
competence can be used and integrated with other such algorithms to produce a reliable vi-
sion system that operates effectively in a broader context than: any of its individual component
algorithms can. A

The image understanding system envisioned comprises a large number of computer vision
algorithms, each tailored to accomplish a particular task under a particular set of circum-
stances. The goals of these algorithms may overlap or even duplicate each other’s goals, but
the assumptions that they make and the data with which they operate will often differ.

The strategy for integrating such a collection of computer vision algorithms is to represent
explicitly the assumptions made by each algorithm, and to use the context of the present task
to select the most appropriate algorithms for solving that task. By doing so we hope to avoid
the source of many failures of computer vision techniques — the employment of an algorithm
outside the bounds of its intended domain of competence.

4.2 Background

In the emerging context-based vision paradigm, the development of general-purpose visual
capabilities is attempted by assembling large numbers of special-purpose algorithms. Their
invocation and interpretation of results are mediated by the consideration of contextual infor-

madtion.

2for Context-Driven Object Recognition

18

The coNDOR image understanding system was designed along these lines to serve as the
perceptual architecture for a hypothetical outdoor robot. Given an image and a possibly ex-
tensive database describing the robot’s environment, the system is to analyze the image and to
augment its world model. CONDOR’s recognition vocabulary consists mainly of natural objects
such as trees, bushes, trails, and rocks. Because of the difficulty of recognizing such objects
individually, CONDOR accepts an interpretation only if it is consistent with its world model.
CONDOR recognizes entire contexts, rather than individual objects [18, 19, 20].

By making explicit the built-in assumptions inherent in all computer vision algorithms, the

CONDOR architecture has been designed to allow context to influence the recognition process.

In the context-based vision paradigm, the invocation of all algorithms is governed by context.
Rather than employing a hard-wired control structure, the process is driven by context.

CONDOR associates a data structure called a contexrt set with each IU algorithm. The context
set identifies those conditions that must be true for that algorithm to be applicable. Efficient
and effective visual recognition can be achieved only by invoking IU algorithms in those contexts
in which they are likely to succeed.

Formally, a context set is a collection of context elements that are sufficient for inferring some
relation or applying some algorithm. A contezt element is a predicate involving any number of
terms that refer to the physical, photogrammetric, or computational context of image analysis.

Each algorithm has an associated context set, and is invoked only if its context set is
satisfied. A context set is considered to be satisfied only if all its context elements are satisfied.
As an example, consider a simple operator that extracts blue regions to find areas that could
be labeled “sky.” A context set for this operator might be

{ image-is-color, camera-is-horizontdi¥ sky-is-clear, time-is-daytime }
The blue-sky algorithm would be unreliable if it were employed in anything but this context.

‘
[

4.3 Implementation Choices ; 5

While CONDOR has demonstrated a significant capability for recognizing natural objects in
ground-level outdoor imagery, perhaps its more enduring contribution lies in its context-based
architecture (CBA), which offers a design methodology with broad applicability. For example,
CBA is an attractive framework for organizing a site-model construction system using many
algorithms that extract different features under different circumstances. This report describes
the use of CBA in a site-model construction system.

Several alternatives exist for implementing the context-set concept.

4.3.1 Context Sets

Context sets are used to specify the conditions that must be met for a given algorithm to be
applicable. The context set can also specify the conditions that must be met for a given pa-
rameter setting to be useful. For example,

MBO(closed-curve. rectangular-corners. manual-entry, gradient-descent)

specifies the parameters for a model-based optimization (MBO) algorithm that could be used to
extract roof boundaries under some circumstances. The following context set encodes conditions

19

that are required for the extraction of roofs using that algorithm:

{ image-is-bw, image-resoiution< 3.0, interactivity-is-semiautomated }

This context set gives the requirements that must exist for the MBO algorithm to be ap-
plicable and it specifies the suitable parameter values. In the previous example for detecting
roofs, the parameters were specified as having a closed-curve topology, an objective function
preferring rectangular corners, initial boundary provided by manual entry, and the use of a
__gradient-descent optimization procedure.

In practice, a large number of context sets governing the application of MBO algorithms, as
well as other algorithms, could be constructed and used to implement a cartographic feature-
extraction system suitable for site-model construction. It is clear that such a collection could be
unwieldy and difficult to maintain.' A more structured representation of the context-set concept
is needed. L

4.3.2 Context Tables

One alternative representation for context sets is the contert table — a data structure that
tabulates the context elements in a more structured fashion [17]. An IU algorithm is associated
with each row in the table; each column represents one context element.

The context table is equivalent to a collection of context sets. Conceptually, it provides a
more coherent view of the contextual requirements of related algorithms. Applicable algorithms
are selected by finding rows for which all conditions are met. One drawback to the table
representation is its potentially large size. Each algerithm may require many rows to capture the
contextual constraints of its various parameter combinations. Its chief value is its organization
of contextual information for knowledge-based construction.

[
)t
¥

b

R

4.3.3 Context Rules

A third alternative for representing context sets is to encode them as production rules whose
antecedent is the context set, and whose consequent is the applicable algorithm. For example,

{ image-is-bw, image-resolution< 3.0, interactivity-is-semiautomated } =
MBO(closed-curve, rectangular-corners, manual-entry, gradient-descent):

One advantage of encoding the rules as a logic program is that using the logic program
interpreter eliminates the need to devise special machinery to test satisfaction of context sets.
Unification provides a generic mechanism for matching the constraints embodied in a rule to the
current context. Context rules can be more compact than the equivalent context table because
additional predicates can be introduced to capture common context elements that appear in
multiple rows of the table.

Whatever representation is chosen, it is clear that context sets can be employed in either
direction. In the forward direction, the context sets are used to find applicable algorithms.
In the opposite direction, the sets can be used for several purposes, including the selection of
images on which to invoke a given algorithm.

20

4.4 Context-Based Architecture Specification

We have chosen to use logic programming to implement our context-based architecture, for
the reasons discussed in the previous section. In this document, we adopt the Prolog syntax
to illustrate the concepts [21]. It should be noted that the choice of logic programming (and
Prolog in particular) is primarily a matter of implementation convenience — other schemes
could be employed as effectively.

" 4.4.1 Terms

Before describing the context-based architecture in detail, we introduce two concepts that are
central to its operation: algorithms and tasks (Figure 3).

algorithm(Name, Parms)
Name: The name of a lisp function
Parms: A4 list of the parameters to the function

task(Name, Feature, Given)

Name: A generic task name, such as extract or refine
Feature: A feature type (eg, :building, :road, :functional-area)
Given: An object to be used, an image, a regiomn, or other designation of

a location where the task is to be accomplished

)

- @
Figure 3: Documentation of compound terms.

An algorithm, represented by a logical term, designateslza:‘ piece of code that implements a
computer vision technique. Each algorithm term indicated the name of the procedure to be
invoked and a list of the parameters it expects. The parameters will typically include a list of
the images to be employed, any initial conditions to be provided, and the typical arguments to
the function. For example,

algorithm(road-tracker, (ft-hood-2, 3d-ribbon-curve, (942, 1516)))

indicates that the road-tracker algorithm is to be invoked on the image named ft-hood-2,
creating an object of class 3d-ribbon-curve starting at image coordinate (942, 1516).

A taskis a term that indicates an operation that could be performed. It includes the name
of the task, the type of feature that is desired, and a list of the data to be used in accomplishing
the task. An example task is

task(extract, wide-road, world-point(-5407.3, 5732.2)).

Here, the task is to extract a wide road starting from the specified image coordinate.

21

4.4.2 Predicates

Figure 4 documents the two most important predicates used in the context-based architecture:
solves and invoke °.

The predicate solves(Alg, Task) is true if the indicated algorithm can be used to solve
the indicated task. The specification of the algorithm includes the specification of the imagery,
parameters, and other given information that is to be used. The task provides a complete
specification of the goal to be accomplished and the constraints to be exploited.

The predicate invoke(Alg) is true if the indicated algorithm is applicable to solving the
current task. It is the truth of this predicate, and the associated binding of Alg, that the
context-based architecure is expected to compute.

solves(Alg, Task)
Alg is an algorithm that can be used to solve the task.
Task is a specification of that task.

invoke(Alg)
Alg is an algorithm that is applicable to solve the current task
in the current context.

Figure 4: Documentation of some predicates.

4.4.3 Rules i

Di

The primary rule governing the operation of the CBA is'shown in F igure 5(a). It specifies
the conditions that must be satisfied in order for an appropriate algorithm to be found to solve
the currently desired task in the current context. In words, this rule states that an algorithm to
be invoked must be capable of solving the desired task, and that its level of interactivity must be
what is desired and its accuracy must meet the desired accuracy. The terms involving the pred-
icates desired-task(Task), desired-interactivity(Int), and desired-accuracy(Acc)
are expected to be provided in advance by the user.

Several auxiliary rules, such as the one shown in Figure 5(b), add versatility to the control
structure. This rule states that an algorithm that solves a task using a particular image also
solves that task for the site captured by the image. For example, the task

task(extract, buildings, fort-hood)

can be reduced to
task(extract, buildings, fort-hood-imagel)

if fort-hood-image1 actually portrays the site, Fort Hood.

3Throughout this paper, normal Prolog syntax is used. By convention, the names of all variables are capital-
ized, while predicates and ground atoms begin with a lowercase letter. ,

22

(a)
% invoke(Alg)

% Alg is an algorithm that could be invoked to solve
/A the given task in the specified context.
invoke(Alg) :- solves(Alg, Task),

desired-task(Task),
desired-interactivity(Int),
interactivity(Alg, Int),
desired-accuracy(Acc),
accuracy(Alg, Acc).

(b)
% An algorithm that solves a task using an image, also solves the task
A for the site of the image.
solves(Alg, task(Name, Feature, Site)) :-
solves(Alg, task(Name, Feature, Image)),
image-site(Image, Site).

Figure 5: Documentation of the top-level rules.

el g

Posing the query invoke(Alg) triggers the search of a binding for Alg that solves the desired
task, Task. If successful, the binding of Alg that is produced is typically a compound term
specifying an algorithm, the imagery to be used, and any parameters it needs. If no applicable
algorithm can be found, the search terminates and the failure {s reported.

The use of the Cha.m Raule given in Figure 6(a) allows the interpreter to search for a se-
quence of algorithms that collectively solve the desired task. The rules in Figure 6(b), (c), and
(d) describe how the interactivity and accuracy of a composition of algorithms relate to the
properties of each individual algorithm:.

4.4.4 Rule Packets

Introduction of a new algorithm to the system requires specification of a packet of rules that
delimit its scope of applicability, its properties, and its assumptions.

For example, Lynn Quam’s Road Tracker algorithm [22] seeks to follow the extent of a road
by correlating successive cross sections starting from an initial seed point. It requires that the
width of the road occupy at least 4 pixels. The rule packet governing the application of this
algorithm is given in Figure 7. The first rule states that the algorithm can be used to extract
any feature that is a subclass of type road, that the image it uses must have a ground-sample-
distance of less than 1.5 meters (i.e., a 6-meter-wide road must occupy at least 4 pixels), and
that the algorithm will use an instance of an RCDE class that is suitable for modeling the type
of feature desired.

The remaining two rules specify that the road-tracker algorithm is inherently semiautomatic
(because it requires the user to provide an initial seed point), and that the delineation accuracy

23

(a)
% Chain rule:
% A task can be solved by splitting it into two parts.
solves(algorithm(compose, [Algl, Alg2]), task(extract, Feature2, Image)) :-
solves(Algl, task(extract, Featurel, Feature2)),
solves(Alg2, task(extract, Feature2, Image)) .

(v)

% The interactivity of the composition of two algorithms with the

Y% same interactivity is the same.

interactivity(algorithm(compose, [Algi, Alg2]), Int) :-

interactivity(Algi, Int),

interactivity(Alg2, Int).

(¢) o

% If either algorithm is manual or semiautomatic, the composition

% must be semiautomatic.

interactivity(algorithm(compose, [Algl, Alg2]), semiauté?atic) 1=
interactivity(Algi, Intl), e
interactivity(alg2, Int2),
=\(Inti, Int2).

(4)
% The accuracy of the composition of two algorithms is the accuracy
% of the last algorithm
accuracy(algorithm(compose, [Algi, Alg2]) , Acc) :-
accuracy(Algl, Acc).

Figure 6: The Chain Rule.

24

% road-tracker(Image, Class)

A The top-level lisp function to invoke Lynn Quam’s road tracker algorithm.
% This version is interactive -- it prompts the user to provide
A the initial pair of points.
pA Image: The image to be used
-4 Class: The RCDE class to be instantiated

solves(algorithm(road-tracker, Image, Class), task(extract, Feature, Image)) :-
image(Image),
subtype(road, Feature), -
rcde-class-of-feature-type(Class, Feature),
gsd(Image, X),
<(X, 1.5).

interactivity(algorithm(road-tracker, Image, Class), semiautomatic).

accuracy(algorithm(road-tracker, Image, Class), coarse).

Figure 7: The rule packet for the Road Tracker algorithm.

oh
4

that can be expected is qualitatively designated as “coarse.”, |
4.5 Examples

We have implemented a prototype of the context-based architecture using Prolog. This software
is presently being tested and extended to provide more flexibility and more powerful constructs
for use in the algorithm-specific rule packets.

e Mouse input of points and lines

¢ Interactive RCDE object-modeling primitives

A subset of the model-based optimization algorithms

The Quam Road Tracker

The Cookie-Cutter algorithm for automatically cloning structures

The rule packets for these algorithms illustrate the basic operation of the CBA. More ad-
vanced concepts are currently being devised and implemented to allow more precise specification
of when an algorithm should be used and how its parameters are to be determined.

25

(a) ..

image-site(fort-hood-imagel, fort-hood).
image-site(fort-hood-image2, fort-hood).
image-site(fort-hood-image3, fort-hood).

gsd(fort-hood-image1, 2.0). % image resolution, in meters
gsd(fort-hood-image2, 2.0).
. gsd(fort-hood-image3, 0.8).

subtype(road, one-lane-road). % feature-type hierarchy
subtype(road, two-lane-road).

% association of modeling primitives
rcde-class-of-feature-type(cube-object, building). o
rcde-class-of-feature-type(3d-ribbon-curve, one-lane-road).
rcde~class-of-feature-type(3d-ribbon-curve, two-lane-road).

(b)

desired-task(extract, two-lane-road, fort-hood).
desired-accuracy(coarse).
desired-interactivity(semiautomatic).

Figure 8: A set of facts used to'dnswer an example query.

Each algorithm that is to be controlled by the CBA is (rgpresented by a packet of rules.
Section 4.5 contains rule packets for the following algorithms: !/

To illustrate the operation of the CBA, consider the goal of semiautomatically extracting a
model of a road, using the rule packets listed at the end of this section (beginning on Page 28).
The complete logic program used by the CBA also contains a collection of facts about the
current context. This includes a list of images that are available and their properties. In
practice, these can be computed at run time through procedural attachment within the logic
programming, but for illustrative purposes we list them here explicitly as a collection of facts
(Figure 8(a)).

The user asserts additional facts as shown in Figure 8(b), to specify the task and the con-
straints on that task. The CBA is then activated by posing the query to the Prolog interpreter:

invoke(Alg)
to which the only acceptable binding for Alg is
algorithm(road-tracker, ft-hood-image3, 3d-ribbon-curve)

This example makes use of the rule in Figure 5(b) to find images of the Fort Hood site for further
consideration. Only fort-hood-image3 has sufficient resolution for use by the road-tracker
algorithm. The example illustrates how the CBA has identified a suitable algorithm, its pa-
rameters, and an image, given only the specification of the task to extract a road from Fort

Hood.

26

If more than one binding of Alg would have soived the query, the Prolog interpreter would
compute each one of them. Additional machinery is currently being developed to allow the
CBA to choose the best algorithm, or best imagery, when more than one solution exists.

s Gy

27

Prolog Rule Packets for Several Algorithms

%MOUSE SPECIFICATIONS:

/=
mouse-get-point(Image, Prompt)
A lisp function that prompts the user to mouse an image point
Image: The image to be displayed during input
) Prompt: The test string to be displayed during input
B

solves(algorithm(mouse-get-point, (Image, "Pick a point:")), task(extract, point, Image))
image(Image) .

interactivity(algorithm(mouse-get-point, Parms), manual).

accuracy(algorithm(mouse-get-point, Parms), coarse).

4
/*

mouse-get-point-pair(Image, Prompt)
A lisp function that prompts the user to mouse an image point
Image: The image to be displayed during input
Prompt: The test string to be displayed during input

=/
solves(algorithm(mouse-get-point-pair, (Image, “Pick a pair of points:")),
task(extract, point-pair, Image)) :- R
image(Image).

interactivity(algorithm(mouse-get-point-pair, Parms), manual).

accuracy(algorithm(mouse-get-point-pair, Parms), coarse).

R
[N
FREr o

%

% RCDE CREATE OBJECT:

/*
rcde(Image, Class)
A lisp function that allows the user to create an RCDE ojbect of type Class
Image: The image to be displayed during input
Class: The RCDE class of object to be created
*/

solves(algorithm(rcde, (Image, Class)), task(extract, Feature, Image)) :-
image(Image),
feature~type(Feature),
rcde-class(Class),
rcde-class—of-feature-type(Class, Feature) .

interactivity(algorithm(rcde, Parms), manual).

accuracy(algorithm(rcde, Parms), coarse).

%

28

% SWAKE SPECIFICATION:

/*
snake(Image, Object, Parms)
The top~level lisp function to invoke snakes

+/

solves(algorithm(snake, [Image, Object, default-parms]), task(refine, Object, Image)) :-
image(Image) ,
rcde-object(Object).

interactivity(algorithm(snake, {Image, Object, Parms]), automatic) :- rcde-object(Object).
accuracy(algorithm(snake, [Image, Object, Parms]), fine) :- rcde-object(Object).
%

solves(algorithm(snake, [Image, radius-canal, pofe]), task(refine, canal, Image)) :-
image(Image).

solves(algorithm(snake, [Image, radius-shoreline, sote]), task(refine, shoreline, Image)) :-
image(Image) .

solves(algorithm(snake, [Image, radius-fence, pote]), task(refine, fence, Image)) :-
image(Image) .

solves(algorithm(snake, [Image, radius-fence, potl]), task(refine, fence, Image)) :-
image (Image) .

X... Ceie o

%

solves(algorithm(snake, [Image, Class, default-parms]), task(extraq&g Feature, Image)) :-
image(Image), e
rcde-class-of-feature-type(Class, Feature).

interactivity(algorithm(snake, [Image, Class, default-parms]), semiautomatic) :- rcde-class(Class).
accuracy(algorithm(snake, [Image, Class, default-parms]), fine) :- rcde-~class(Class).
%

% ROAD TRACKER SPECIFICATION:

% road-tracker(Image, Class)

% The top-level lisp function to invoke Lynn Quam’s road tracker algorithm.
%4 This version is interactive -- it prompts the user to provide

% the initial pair of points.

% Image: The image to be used

%4 Class: The RCDE class to be instantiated

solves(algorithm(road-tracker, Image, Class), task(extract, Feature, Image)) :=-
image(Image),
subtype(road, Feature),
rcde-class-of-feature-type(Class, Featurs),
gsd(Image, X),

29

<(X, 1.5).

interactivity(algorithm(road-tracker, Image, Class), semiautomatic).

accuracy(algorithm(road-tracker, Image, Class), coarse).

%
_. -XCOOKIE CUTTER:

/*
cookie-cutter(Image, Prototype, Region)
The top-level lisp-function to invoke Aaron’s implementation of the cookia cutter algorithm
Image: The image to be used
Prototype: An RCDE object to be used as a replica for the desired objects
Region: An image region within which to search for copies of the prototype

«/
solves(algorithm(cookie-cutter, (Image, Prototype, Region)) , task(extract, Feature, Region)) :-

image(Image),
feature-type—of-object(Feature, Prototype).

interactivity(algorithn(cookie-cuttar. Parms), automatic).

accuracy(algorithm(cookie-cutter, Parms), coarse).

e
T
a

30

4.6 Discussion

The context-based architecture described was designed to enable the construction of large,
reliable image understanding systems by integrating a collection of reliable, but specialized
algorithms. Initial experiments indicate that progress has been made in this direction, but
more formal testing of even larger assemblages of algorithms is necessary to fully validate this
belief.

It is clear that the performance of an IU system that employs the context-based architecture
* could also be attained by integrating the same computer vision algorithms via more traditional
methods. However, the explicit representation of contextual constraints affords a number of
additional benefits that would be lost to a purely functional integration. These benefits include:

o The context-based architecture allows the user.to specify the task to be accomplished,
leaving the selection of specific algorithms to be decided by the system. For example, the
user can state that he would like the system to construct a 3D model of a building, and
the system would decide which of several building extraction algorithms would be most
appropriate given the current imagery and auxiliary data that is available. The user can
make effective use of the IU system while possessing little knowledge of the capabilities
and limitations of the individual computer vision algorithms.

o The context rules are used to establish algorithm parameter settings, in the same way
as they delimit the range of applicability. While computer vision algorithms can often
compute their parameter settings from data at run time, the context rules provide a
uniform means for all algorithms to speci{¥ hiow their parameters are to be determined.

e When building large systems in an evolutionary fashion, it can be difficuit to add new
capabilities without jeopardizing the integrity of existing capabilities. The modular de-
composition of the context rules allows the developef' ‘to integrate a new algorithm by
adding a packet of rules governing its use. No modification of existing code is required,
and one need not worry about interaction between the new packet of rules and the existing
rule set, because the new packet only concerns the invocation of the new algorithm.

e It is important to identify the imagery that is most likely to allow an algorithm to yield
a desired result, rather than to choose an algorithm to run on a preselected image. The
context rules already encode the information necessary to make this determination —
they can be used to answer this question by fixing the algorithm and allowing the image
to be a variable in the query. In fact, the context-rule base can be used to answer both
questions simultaneously, finding the best combination of algorithms and images to satsify
a given task.

5 Knowledge-Base Acquisition

Our proposed system is intended to select, parameterize, and apply image understanding algo-
rithms from a library of existing routines within an MSE system. Our work with the CONDOR
system showed that by understanding the context of the sensor data to be interpreted, we can
use a collection of relatively weak algorithms to make reliable decisions. In our past work, the

31

translation table going from contexts to the selection of parameterized algorithms was com-
piled manually — an unacceptable approach for an operational application in which the system
might have to be modified in the field by non-IU-experts. We recently have developed an au-
tomated (learning-based) methodology for performing this task. The Appendix to this report
contains a paper [12] that describes the approach we have developed for context-based learn-
ing and presents experimental data illustrating its effectiveness. While this work must still be
considered to be in the preliminary research stage, it offers promise as the basis for automated
- ‘knowledge-based acquisition in an operational system.

6 Data Sets from TEC

In mid-April 1994, a tape containing additional high-resolution oblique images of portions of
the site at Martin-Marietta, Colorado, was received. :

6.1 Installation in RCDE

Additional facilities have been added to the RCDE to read the TEC format tapes and to install
the imagery in the RCDE. In particular, some of the functions that have been defined are:

read-1993-tec-basic-image-params : This function reads the name, element-size, z-
dimension, y-dimension, minimum-value, and mazimum-value from a stream and returns

them as multiple-values to lisp.

Cae
read-1993-tec-image-header : This function takes a pathname of a file containing 2 TEC
header file and generates the corresponding RCDE ob je(;té associated with the camera
model for the image. It returns a list of the followi;ig objects: file-to-image-matriz,
‘image-to-scanner-matriz, scanner-to-fiducial-matriz, Jens-corrections, focal-length (in
mm), camera-position, photo-to-ground-matriz, earth-mean-radius, reference-coordinate-
system, local-to-long-lat-info, local-to-utm-info, image-to-camera-matriz, and camera-to-

image-matriz.

read-tec-1993-dem-header : This function takes a pathname of a file containing a TEC
DEM header file and generates the corresponding RCDE objects associated with the
coordinate transforms associated with the DEM. It returns a list of the basic image pa-
rameters associated with the DEM, plus the DEM-to-UTM coordinate transform matrix.

make-camera-model-from-tec-header : This function takes the header information as
parsed by the function read-1993-tec-image-header and generates an RCDE perspective
transform object to use as the camera model for the associated image.

build-tec-3d-world : This function constructs the local coordinate system to be used as a
georeference for a TEC format data set. It accepts a name for the site, plus the latitude-
longitude of the origin, and establishes the requisite transforms to freely shift between
UTM, Lat-Long, and Cartesian coordinate systems.

build-tec-site-from-utm-referenced-data : This function uses build-tec-3d-world to con-
struct the 3d-world for a TEC format data set. It also takes special care to link terrain

32

data that is specified on a UTM grid, so that no accuracy is lost and the terrain model
need not be resampled.

These functions, and other supporting functions have been collected in the file tec-header-
input.lisp and installed as an application on top of the RCDE. We will distribute it with future
versions of the RCDE. RADIUS contractors who desire to use it before the next release are
welcome to contact us directly.

6.2 Initial Site Model Construction

After installing the imagery in the RCDE, an attempt was made to model one of the building
complexes as a benchmark in modeling future complex buildings.

The complex is shown in Figure 9. Using the collection of interactive manipulations provided
by the RCDE, we were able to generate the model shown in Figures 10 and 11 in three minutes.
An additional minute was spent to associate texture maps with some of the building faces and
roofs. After 15 seconds of processing time on a Sparc-2, the synthetic image shown in Figure 12
was generated.

Experience with this data set shows that it is not too difficult to model small complexes
of buildings such as this one using current RCDE capabilities. The model could be generated
more quickly and accurately with the incorporation of additional constraints, such as aligning
walls of adjacent buildings. A menu operation should be added to associate texture maps with
all visible faces, so that this task is less tedious.

Full automation of the reconstruction of a building complex is beyond the current capabilities
of our model-based optimization techniques (and“é.'hy other building extraction system that we
are aware of). This data set could serve as a useful “challenge” problem for those laboratories

attempting to automate the extraction of building models from overhead imagery.
" »

v
o
v

v

7 Summary

The RADIUS Program could benefit greatly from the use of more highly automated means for
constructing and updating 3-D site models. Our research on model-based optimization has led
to the development of a number of tools that increase the degree of automation and precision
that is possible. These have been implemented in the RCDE and incorporated in the RADIUS
Testbed. Further use of these tools within the Testbed will undoubtedly lead to new ideas and
additional improvements in the site-model construction process.

Our work on the context-based vision paradigm has led to the development of a new ar-
chitecture for integrating independently developed IU algorithms within a single system. The
architecture provides the additional benefit to RADIUS of allowing the IA to specify a desired
result, rather than a specific procedure to be followed, in carrying out an image exploitation
task. This architecture is now being refined, and will be incorporated in the RADIUS Testbed
before the end of the project.

References

(1] D. Gerson. Radius: The government viewpoint. In ARPA Image Understanding Workshop, January
1992.

33

[2] J. Mundy and P. Vrobel. The role of iu technology in radius phase ii. In Unpublished, May 1994.

(3] Thomas M. Strat and W. Doublas Clinrenson. Radius: Site model content. In ARPA Workshop on
Image Understanding, November 1994.

(4] A.J. Hanson and L. Quam. Overview of the SRI Cartographic Modeling Environment. In DARPA
Workshop on Image Understanding, pages 576-582, April 1988.

(5] J.L. Mundy, R. Welty, L. Quam, T. Strat, W. Bremmer, M. Horwedel, D. Hackett, and A. Hoogs.
The RADIUS Common Development Environment. In DARPA Workshop on Image Understanding,
pages 215-226, 1992. :

(6] D. Terzopoulos, A. Witkin, and M. Kass. Symmetry-seeking models and 3D object reconstruction.
International Journal of Computer Vision, 1:211-221, 1987.
[7] M. Kass, A. Witkin, and D. Terzopoulos. Snakes: Active contour models. International Journal of
Computer Vision, 1(4):321-331, 1988. o
(8] P. Fua and A.J. Hanson. Objective functions for feature discrimination. In IJCAI Detroit, August
1989.
[9] Y.G. Leclerc. Constructing simple stable descriptions for image partitioning. /nternational Journal
of Computer Vision, 3(1):73-102, 1989.
[10] P. Fua and A.J. Hanson. An optimization framework for feature extraction. Machine Vision and
Applications, 4(2):59-87, Spring 1991.
[11] P. Fua and Y.G. Leclerc. Model driven edge detection. Machine Vision and Applications, 3:45-56,
1990.

[12] S. Houzelle, T.M. Strat, P.V. Fua, and M.A. Fischler. Using contextual information to set control
parameters of a vision process. in preparation, 1994.

[13] R. Chellappa, L.S. Davis, D. DeMenthon, A. Rosenfeld and Q. Zheng. Site-Model-Based Change
Detection and Image Registration. In ARPA Image Understan,d;’ng Workshop, April 1993.

(14] L.S. Davis C.L. Lin X. Zhang C. Rodriguez A. Rosenfeld R. ‘Chellappa, Q. Zheng and T. Moore.
"Site-Model-Based Monitoring of Aerial Images. In DARPA Workshop on Image Understanding,
November 1994.

[15] J.A. Shufelt and D.M. McKeown. Fusion of monocular cues to detect man-made structures in aerial
imagery. CVGIP: Image Understanding, 57(3):307-330, May 1993.

(16] A. Huertas C. Lin and R. Nevatia. Detection of buildings using perceptual grouping and shadows.
In Proc. IEEE CVPR-94, Seattle, June 1994.

[17] Thomas M. Strat. Employing contextual information in computer vision. In DARPA Workshop on
Image Understanding, 1993.

[18] T.M. Strat and M.A. Fischler. N atural object recognition: A theoretical framework and its imple-
mentation. Proc. IJCAI-31, August 1991.

[19] T. M. Strat and M. A. Fischler. Context-based vision: Recognizing objects using both 2d and 3d
imagery. IEEE Trans. on Pattern Analysis and Machine Intelligence, 13(10):1050-1065, October

1991.
[20] Thomas M. Strat. Natural Object Recognition. Springer-Verlag, New York, 1992.
[21] Leon Sterling and Ehud Shapiro. The Art of Prolog. The MIT Press, Cambridge, Mass., 1986.

[22] Lynn H. Quam and Thoms M. Strat. Sri image understanding research in cartographic feature
extraction. In Proc. ISPRS2, Munich, September 1991.

34

.

TR

35

Image of building complex to be modeled.

.
.

Figure 9

Figure 11: Shaded perspe

ctive view of building complex.

Figure 12: Synthetic perspective image of building complex.

38

Appéndix A

1.
&

“Initializing Snakes” -~ -~

W. Neuenschwander, P. Fua, G. Szekely, and O. Kubler
published in
Proceedings, IEEE CVPR

Seattle, Washington
June 1994.

e
o~
. -

39

Initializing Snakes

W. Neuenschwander*, P. Fua_._T,, G. Székely®, and O. Kibler-

° Communication Technology Laboratory

Swiss Federal Institute of Technology
ETH
CH-8092 Zurich, Switzeriand

Abstract

In this paper, we propose a snake-based approach
that lets a user specify only the distant end points of
the curve he wishes to delineate without having to sup-
ply an almost complete polygonal spprozimation. We
achieve much better convergence properties than those
of traditional snakes by using the image information
around these end points to provide boundary condi-
tions and by introducing an optimization schedule that
allows the snake to take image information into ac-
count first only near its extremities and then, progres-
sively, towards its center.

These snakes could be used to alleviaie the often
repetitive task practitioners have to face when seg-
menting tmages by abolishing the need to sketch a fea-
ture of interest in its entirety, that is, to perform a
painstaking, almost complete, manual segmentation.

1 Introduction

In recent years snakes, have emerged as a very
powerful tool for semiautomated object delineation.
They have been originated by Terzopoulos, Kass, and
Witkin (1, 2] and have since given rise to a large body
of literature {{3. 4, 5, 6] among many others) that ex-
plores theoretical and implementation issues as well as
new applications.

In most of these papers, however, it is assumed that
the initial position of the snake is relatively close to the
desired solution. While this is a reasonable assump-
tion for applications such as motion tracking {7, 8],
it is ineffective for delineating complex objects from
scratch.

The optimization of the traditional snakes is typi-
cally global and takes edge-information into account
along the whole curve simultaneously. When the
snake's initial position is far away from the desired
result, this often results in the snake getting stuck in
an undesirable local minimum because it uses irrel-
evant edge information. The minimization problem

t SRI International
Artificial [atelligence Center
333 Ravenswood Avenue
Menlo Park. CA 94025, USA

is solved by treating the snake as a physical system
evolving under the influence of the potential that is
the sum of an objective function and a dissipation po-
tential that enforces convergence. This potential tends
to prevent the snake from moving far away from its
current position, thereby contributing to foreing the
snake's initial position to be close from the desired
solution in order to achieve convergence and not get
stuck in an undesirable local minimum. In the re-
mainder of the paper, we will refer to these snakes as
“dynamic snakes” because their position is computed
by solving the dynamics equation of a physical system.

Here, we describe a snake approach that allows a
user to specify only the end points of the curve he
wishes to delineate instead of a complete polygonal
approximation. This way we may abolish the need to
outlinsthe desired structure very precisely, that is, to
perform a painstaking, almost complete, manual seg-
mentation. The optimization progresses from the end
points towards the, center thereby effectively propa-
gating edge-inform,’ati'on along the curve without the
need for a dissipation potential. The user-supplied end
points and the automatically computed edge gradient
in their vicinity serve as anchors. They are first used
to compute an initial state that is approximately cor-
rect in the anchors’ vicinity. While the image term is
“turned on” progressively from the snake’s extremities
towards its middle section, the snake's position is iter-
atively recomputed. As a result, the snake eventually
finds the smooth path, as defined by the regulariza-
tion term, that best matches the edge connecting the
two end points and has the right orientation at these
points. We will refer to these snakes as “static” snakes.

In the following section, we describe the traditional
ot dynamic snakes. Next, we introduce our own breed
of static snakes. Finally, we present results on both
synthetic and real images that demonstrate the im-
proved performance of the static snakes for initializa-
tions that are far away from the desired cesuit. .

(b)

Figure 1: lll conditioned behavior of the dynamic snakes with respect to initialization . (a) Slightly different initializations: the
snake is initialized using a polygon with five vertices. While the third vertex moves closer to the shape, the other vertices are
the same for ail six situations. (b) The corresponding results: the snake detects the correct contour (6th image pair) when the
third vertex is ciose enough to the object’s border. However, it is not intuitively obvious what the threshoid is.

2 Dynamic snakes

The original snakes (2] are modeled as time depen-
dent 2-D curves defined parametrically as

I.).(S,t) = (I(S, t)v y(sv t))OSJSl ’ (1)

where s is proportional to the arc length, ¢ the current
time and z and y the curve’s image coordinates. The
snake deforms itself as time progresses so as to min-
tmize an image potential £,(7) = -—fol P(9(s,t))ds,
where P(9(s,t)) is a function of the image. One typi-
cal choice is to take P(#(s,t)) to be equal to the mag-
nitude of the image gradient. However, because the
gradient magnitude can vary rapidly due to contrast
changes and to noise, it has proven effective to either
clip the derived potential force (4] or replace the gra-
dient magnitude by its logarithm {3]. Alternatively,
one can take P(%(s,t)) to be the Euclidean distance
to the closest edge-point in an edge-map computed us-
ing an operator such as the Canny edge-detector (9].
The results of all these approaches are very similar.
In our implementation, described in section 3, we use
the latter where the Euclidean distances are computed
using the Danielsson distance transform ({10]. Unfor-
tunately, whatever the choice of P, E;(9) is typically
not a convex functional.

To perform the optimization, following Terzopou-
los et.gl.; one must minimize an energy E(7) that is
the sum of £/(%) and of a regularization term Ep(v).
Using the thin-plate model, £p(7) is taken to be

1 7(s. t)|? (s, t)|?
50(17)=§/0&(8) %tﬂ?(ﬂ e Ols,

where a(s) and ((s) are arbitrary functions that reg-
ulate the curve’s tension and rigidity. In the imple-
mentation described in section 3, @ and 3 are taken

to be constant and are supplied by the user. We have
shown (3] that they can be chosen in a fairly image-
independent way. Several techniques, however, have
been proposed to dynamically adjust the values of «
and 0 along the curve (see (11] for example).

Variational calculus shows that if v minimizes £ =
Ep + £ and is sufficiently regular, that is at least
C*(0, 1), then it must be a solution of the Euler dif-
ferential equation

-a-a;<a(s)————aig‘:t)> + 58-‘;-363(5)——-‘9 -gizt)) = (3)
=V P(9(s,t))

-
Note that, in order to have a unique solution for this
equation, one must specify boundary conditions such
as the values and derivatives of U(S,t)l’e{o’”.

In practice, toﬁmi"nimize E(7), one must discretize
the curve ¥ by sarnpling it at regular intervals. We
therefore take v to be a polygonal curve defined by a
set of vertices 7 = (z}, yl-l)gs,'s,,.

Using finite differences, the snake energy E(7) be-
comes £(v) = E;(¥) + Ep(v) where

E(7) = =3 P(ai,vi)
Eo(7) = 3 3 as{(a ~ 21007 + (5 - vl
'*'é ‘Zﬁi [(21‘; -z - 1'54-1)2

hed
+(24 = viot — vis) } :
Note that £p (") is quadratic and can be rewritten as

1) Lo ..
Ep(i") = EX,TAX, + -Q-Y,T!\K , (4)

(b)

Figure 2: Sensitivity of dynamic snakes to nearby contours. (a) Different initializations: the snake is initialized using a polygon
with an increasing number of vertices. (b) The corresponding resuits: The fact that the two objects are lying close to each other
forces the user to outline the desired contour segment precisely. If the snake touches the influence region of a nearby object it

will get stuck on the wrong contour.

where K is a (n+1) x (n+1) penta-diagonal matrix,
and X =(z0,21,...,2n) and Y = (¥o0,¥1,.-,Yn) are
the vectors of the z and y vertex coordinates.

A curve that minimizes the energy £ must be such

that 0E O8Ep OE
0E _0Ep _OEr _
5 = a5 T a7 O (5)

Since the deformation energy Ep in equation (4) is
quadratic and decouples the z and y coordinates of
the curve, equation (3) can be rewritten as a system
of two equations

KX=Fx , KY=Fy (6)
where g 9E
! {

==L ==L 7

Fx x Y Y M

which are coupled by the “image forces,” Fx and Fy.
Note that Fx and Fy depend on the snake’s posi-
tion, making the system semi-linear. The matrix K,
however, is not invertible and these equations cannot
be solved directly. This stems from the fact that the
Euler differential equation (3) has a unique solution
only when boundary conditions are supplied. In sec-
tion 3, we will show how we can solve this system of
equations by supplying the boundary conditions. This
will be one of the key differences between our approach
and more traditional snake implementations in which
the minimization of £(7) is achieved by embedding the
curve into a viscous medium and solving the equation
of the dynamics. This amounts to adding a Rayleigh
dissipation functional to the energy and leads to solv-
ing the following differential equation:

0E _di _

where v is the viscosity of the medium. As in the case
of equation (6), after-time discretization, this can be
rewritten as a set of two equations in X and Y:

([&. + ‘}'[)JYg = ‘/1‘(1_1 -+ FX
(K+vD)Y:=vYee + Fy

(8)

where K, Fx and Fy are defined in equation (6). The
matrix (KX + v/) is positive definite for v+ > 0. The
dynamic snakes are effective when the inicial position
of 7 is close from the desired solution. However, as il-
lustrated by figures 1 and 2, they are very sensitive to
initial‘eonditions. They can easily get caught in local
minima when there are other edges in the vicinity of
the desired one that may “catch” the snake or when
the desired outline presents large concavities that force
the snake to excené iifself. In the next section, we in-
troduce a different breed of snakes, the “static snakes”
that alleviate these problems by replacing the viscos-
ity term by boundary conditions that produce better
solutions of equation (3).

3 Static snakes

To improve upon the snakes’ convergence proper-
ties, we must use constraints that better reflect the
image properties than the Rayleigh dissipation func-
tional of section 2. In our implementation, we assume
that the user specifies snake end points in the vicinity
of clearly visible edge segments, which implies a well
defined edge direction. It becomes natural to use these
points and their associated edge directions as anchor
points and to propagate the edge information along
the curve starting from them.

Ve use these anchor points to derive an initial po-
sition for the snake which will, in general. be close to

Figure 3:- Evolution of a static snake on the synthetic images of figures 1 and 2. The circles denote the farthest vertices away
from the end points for which the image forces are turned on. The optimization staps when the two circles meet (section 3.3).

the desired answer in the vicinity of those points but
nowhere else. We will therefore “turn on” the image
forces (7) in those areas and compute a new position
for the snake using the same boundary conditions as
before. A longer part of the new solution will be closer
to the actual image edge than before; the image forces
can then turned on on this longer part and the snake’s
position recomputed. By iterating this process, we
eventually turn on the image forces over the whole
length of the snake, thereby achieving the propaga-
tion of the edge information from the anchor points
to the snake’s middle. Qur approach is closely related
to perturbation theory (12]: we start with an unper-
turbed solution of our minimization problem and pro-
gressively perturb it by considering more and more of
the image forces.

In the remainder of this section, we first discuss the
use of boundary conditions to solve our minimization
problem. We then derive our initial unperturbed snake
position from the end points and finally we present the
optimization schedule that defines the “turning on” of
the tmage forces.

3.1 Solving the minimization problem
with boundary conditions

As discussed in section 2, minimizing the snake’s
energy amounts to solving the Euler differential equa-
tion (3) which leads, after discretization, the semi-
linear system of the two equations (6). By fixing the
curve's end points (zo, yo) and (za, y,) and giving the
curve's tangent at those points, the above system of
equations reduces to:

K'X'=Fy : K'Y =F

where X’ is the n — | vector (z;,...,zn.;), Y’ the
n—1 vector (yr,...,yn-1) and A’ an (n—1) x (n—

1) penta-diagonal matrix that is now invertible. The
systemn is still semi-linear and cannot, in general, be
solved in closed form. Instead, one must still use a
time discretization and iteratively solve the system

' + —_— ’

KX, = Fx!x'=x;_ Y=y,

1 -1

! ’ —_ ’
A }’2 — FY,X':X:_“Y'=Y,"_

L

3.2 Initialization

In order to successfully optimize our snake, we must
start from an initial position that is approximately
correct in the neighborhood of the end points. The
easiest jvay to achieve this result is to solve the ho-
mogéﬁéous equations that correspond to the system
of Euler equations (3). As discussed in section 2, we
take o and § to be constant, and the homogeneous
system becomes “ -

d2u(s) _d%u(s)
a -+
ds? ds*

- =0 (9)
where v stands for either zor y and 0 < s < 1.

We assume, that the user has chosen the snake’s
head and tail close to dominant edge fragments. In
order to find the true edge location in the near neigh-
borhood of the selected start and end points we first
perform a linear search. The snake tangent at its head
and tail is then given by the valley direction in the po-
tential surface corresponding to the selected contour
fragments. [t is obtained from the orientation map
that can be computed at the same time as the Canny
edge-map. Alternatively, we can fit a cubic polynomial
surface to the potential surface in a 5 x 5 netghborhood
of each end point and take the orientation to be the
principal direction of minimal curvature [13]. The re-
sults are similar. While the tangent direction at the

(a) | (v)

(c) . . o

Figure 4: Outlining roads in an aerial image. (a) Static snakes initializations. (b) Final resuits. All the road edges are correctly
outiined except the bottom left one. (c) The erroneous result is corrected by adding a new control point.

end points can be computed, its orientation cannot be
determined. By default, the boundary conditions are
chosen so that the initial snake defines acute angles
with the line joining the two end-points. Since this
heuristic may fail, we provide the user with the possi-
bility to flip the orientation at both ends. This could
be automated by initializing the snake in the four pos-
sible ways (2 possible orientations at each end) and
retaining the best final result.

By construction, this solution has the right tan-
gent at the end points and is close to the right answer
near these points. It can therefore serve as an ini-
tial curve for the following minimization of the energy
functional.

3.3 Optimization procedure

We start the optimization of the energy term by
defining the initial snake as the solution of the homo-
geneous differential system of equation (9). At this
stage the snake “feels” absolutely no external poten-
tial forces. During the ongoing iterative optimization
process the image potential is turned on progressively
for all the snake vertices, starting from the extremi-
ties. Assuming that the user selects the end points
nearby dominant edge fragments in the image, this
initialization ensures that the snake lies already close
to its optimal position at both ends. We define the
“force boundaries” as the location of the vertices far-
thest away from the end points that feel the image
forces. These boundaries approach each other during
the ongoing optimization process according to the fol-
lowing rule:

e Each boundary is moved at every iteration step
by at least one vertex. To speed up the conver-
gence, we use the fact that our potential surface
is the Danielsson distance map. We shift both
boundaries across the contiguous vertices whose
potential does not exceed the one of the currently
active ones by more than 1.

This strategy allows the snake to leave valleys and to
close small gaps. However, further investigation is re-
quired o better control this “gap closing” mechanism.
We are also working on modifying these heuristics to
deal with a potent.ia..l‘surface derived directly from the

image gradients. .,

4 Results

In this section, using both synthetic and real im-
ages, we compare the dynamic snakes with our sta-
tic snakes and show that the formers’ initialization
must typically be much closer to the desired answer
to achieve comparable results. To achieve a fair com-
parison, we use the same tension and rigidity parame-
ters, and [defined in equation (2), for both kinds
of snakes.

Figure 3 illustrates a static snakes’ behavior on two
synthetic images and its ability to outline the cavity
and distinguish between two nearby objects. Figure 4
shows that our static snakes can be used to delineate
roads in an aerial image using very distant end-points.
Note, however, that our snakes can still become con-
fused in the presence of junctions. This is the case
for the snake drawn in the bottom left corner of fig-
ure 4(b), which is being trapped by an undesirable lo-

cal minimum. In practice, when such problems arise,
our interface ailows the user to add a new point in
the middle of the curve, thereby splitting it into two
snakes. Figure 5 shows the snake’s performance on an
image of an apple.

(b) ’
Figure 5: Detection of different image features by static
snakes. The apple's outline is detected in (a) whereas (b)
shows the detection of the projected shadow.

Nearby features can also be extracted with ease us-
ing static snakes. The first row depicts the extrac-
tion of the apple’s contour. To outline the shadow,
as shown in the second row, the initial points simply
have to be moved into its vicinity. Figure 6 illustrates
similar results on a low contrast face image.

P s

L] - L]
f;':_ R
' ;'i",. 2o
e
- - a
(a) (b)

Figure 6: Outlining facial features. (a) Three pairs of end
points on a face image (Courtesy of INRIA). (b) Final results.

To segment more complex shapes we need a simple
way to sequentially define end points for adjoining
open snake [ragments. We have implemented an inter-
active initialization tool in which the contour finding
process starts as soon as the user has clicked on two
initial points. Sequentially adding salient points will
then extend the initial segment under immediate vi-
sual control.

Intelligent initialization of snakes is required to
make them into an operational tool for image segmen-
tation where existing implementations leave almost all
the work to an "expert user” [2]. Our method has been
designed for practitioners of image evaluation without
a professional background in image understanding.

References

(1] D. Terzopoulos, A. Witkin, and M. Kass.
Symmetry-seeking Models for 3D Object Recon-
struction. [JCV, 1(3):211-221, October 1987.

(2] M. Kass, A. Witkin,.and D. Terzopoulos. Snakes:
Active contour models. 1JCV,1(4):321-331,1988.

(3] P. Fua and Y.G. Leclerc. Model Driven Edge De-
tection. Machine Vision and Applications, 3:45-
36, 1990.

(4] F. Leymarie and M.D. Levine. Tracking de-
formable objects in the plane using an active con-
tour model. JEEE PAMI, 15(6):617-634, 1993.

(5] I. Cohen, L. D. Cohen, and N. Ayache. Us-
ing Deformable Surfaces to Segment 3-D Images
and Infer Differential Strucutres. CVGIP: IU,
56(2):242-263, September 1992.

(6] L.H. Staib and J.S. Duncan. Boundary Finding
with Parametrically Deformable Models. [EEE
PAMI, 14(11):1061-1075, November 1992.

(7] D. Terzopoulos;and R. Szeliski. Tracking with
Kalman Snakes::in A. Blake and A. Yuille, edi-
tors, Active Vision. The MIT Press, 1992.

(8] B. Bascle and R. Deriche. Stereo Matching, Re-
construction and Refinement of 3D Curves Using
Deformable Contours. In /CCV, pages 421-430,
Berlin. Germany, 1993.

(9] J. Canny. A computational approach to edge de-
tection. [EEE PAMI, 8(6):679-698, 1986.

[10] P.E. Danielsson. Euclidean distance mapping.
CVGIP, 14:227-248, 1980.

(11] R. Samadani. Changes in connectivity in ac-
tive contour models. In Proceedings of the [EEE
Workshop on Visual Motion, [rvine, Culifornia,
pages 337-343, March 1989.

(12] A. W. Bush. Perturbation methods for engineers
and scientists. CRC Press, 1992.

(13] R. M. Haralick. The digital step edge from zero
crossings of second directional derivatives. [EEE
PAMI, 6(1):58-68, 1084.

Appendix B

3
X
oo

“Using Contextual Information to Set Control Parameters of a Vision
Process”

Houzelle, S. and T.M. Strat and P.V. Fua and M.A. Fischler
published in |

Proceedings, ICVPR
September, 1994

sl

40

Using Contextual Information to Set
Control Parameters of a Vision Process

S. Houzelle*! T. M. Strat” P. Fua“ M. A. Fischler-
* SRI International f INRIA
Artificial Intelligence Center Projet Pastis
333 Ravenswood Avenue BP 93
Menlo Park, California 94025 F-06902 Sophia Antipolis Cedex
USA FRANCE

ECCV 94 Submission

Abstract

Two of the problems that the user of an image-understanding system must continuously face
are the choice of an appropriate algorithm and the setting of its associated parameters. These
requirements mean that the user must have a fairly high degree of expertise with the algorithms
to accomplish the extraction task effectively. If, on the other hand, the system itself is able
to learn how to select among its algorithms and to set their parameters through its experience
with similar extraction tasks, it should be possiblef¢o reduce the need for operator expertise
while improving efficiency at the same time.

A novel approach to supervised learning of image-understanding tactics is based on the
notion of contextual information. We use a data base to stc;réipast experiences. From this
data base, and context elements computed from the task and’ the input data, we determine
whether or not an algorithm is applicable, and which parameters are suitable for it. The data
base is regularly updated with information of success or failure of the system. To demonstrate
the efficiency of our approach, we describe experiments involving the use of a snake algorithm
to perform the task of curvilinear feature extraction. Our implementation allows the various
parameters of this technique to be context specific. We show in this setting how our system
makes the use of a vision process easier by reducing the needed user expertise and improving

.. efficiency in obtaining the desired results.

Keywords : Image Understanding, Contextual Information, Parameter Learning, Description Learning,
Active Contour, Snake

1 Introduction

The research effort described here is an attempt to make computer vision systems more effective
by endowing them with a capability to learn. Our philosophy has been shaped by the following
principles, each of which has motivated some aspect of our approach:

.. Learning is essential — image understanding system designers cannot anticipate all
possible situations that may arise in advance.

No matter how much effort is devoted to building and refining a knowiedge base, there will always
be limits to the breadth of competence provided. Even if it were possible to construct a knowledge
base sufficient for supporting the entire range of anticipated tasks, the required effort and expense
make it infeasible to do so in all but the most limited applications. Effective mechanisms for enabling
a system to acquire its expertise over time can have a significant impact on our ability to construct
systems that become more (rather than less) competent as they age.

A vision system should improve its performance through ezperience.

Rather than analyzing images in isolation and throwizg away the results, a vision system should
interpret an image in the context of what it already knows about the scene. In addition, the results
of its interpretation should augment its knowledge of the scene and the extraction task, and the
system should be able to use that information to analyze sxrmla.;' 51tuatlons more effectively in the

future.
An intelligent system should never be idle.

If an intelligent system has the ability to learn through experience, it might as well devise its own
training examples to more fully exploit that ability. Rather than maintain a static knowledge base
when the system is not otherwise engaged, it should concoct new situations or revisit previous ones,
invoke its repertoire of reasoning or visual capabilities, and update its knowledge base according to °

the results.

While the accomplishment of any of these objectives is profoundly difficult, we nevertheless have
endeavored to construct a framework that allows the exploration of a particular approach to learning
that offers the promise of at least partial solutions. More specifically, our overall goal is to devise a
practical computer vision system that can

[8%]

o Recognize a class of objects in a set of related images
o Build an enhanced description of the environment from the sequence of images it processes

e Use its enhanced description of the environment to improve its recognition capabilities

Imagine a cartographic application in which the photointerpreter’s task is to model all roadways
within a given geographic area by extracting features from a collection of overlapping overhead
images. The photointerpreter is to be assisted by a partially automated system designed to support
3-D map construction.

The traditional interactive approach embodied in today’s operational systems ! can be described
as follows: .

The system has a collection of algorithms that are suitable for extracting model in-
stances of certain objects. The user chooses the algorithm to be used to extract a partic-
ular object. A menu is provided containing the default values of parameters, which the
user can override if he chooses. The algorithm with the designated parameters is then
applied to the image(s) producing a resultant model instance. The user then has the
option to accept the result, to modify the result manually, to rerun the algorithm with a
different set of parameters, or to choose a different algorithm.
| o
Two of the problems that the user of such a system must face are the choice of algorithm and
the setting of its associated parameters. These requirements mean that the user must have a fairly
high degree of expertise with the algorithms to accomplish the ext,'j;’éction task effectively.

If, on the other hand, the system is itself able to learn how to select among its algorithms and
to set their parameters through its experience with similar extraction tasks, it should be possible to
reduce the need for operator expertise while improving efficiency at the same time.

The approach we propose and describe in this paper addresses the feature extraction task as
follows:

The system has a collection of algorithms that are suitable for extracting model in-
stances of certain objects. The user chooses the class of objects to be extracted and
provides information about his task and the scene being analyzed. The system compares
the extraction context to its prior experience with similar extraction tasks, to choose an
appropriate algorithm and parameter settings for the current task. The algorithm with
the designated parameters is then applied to the image(s), producing a resultant model

'e.g., RCDE, GLMX, DSPW, KBVision, Geoset

instance. The user then has the option to accept the result, to modify the result manually,
to rerun the algorithm with a different set of parameters, to choose 2 different algorithm,
or to ask the system to provide an alternative selection of algorithm and parameters.
The system updates its database of experience with the outcome for use in subsequent
extraction tasks.

The focus of this paper is on establishing a foundation for machine learning in interactive im-
age understanding systems — how can a computer vision system use its experience to improve its
competence? The design and implementation of a commercially successful interactive computer
vision system, the RADIUS Common Development Environment (RCDE), has been discussed else-
where [HQ88, MWQ*91]; this effort is intended to enhance the performance of RCDE through the
addition of a learning component. We build upon the notion of a context-based vision system that
has also been previously developed [SF91, Str92].

Our contribution lies in the creation of an architecture that already serves a useful purpose —
it successfully learns to select feature extraction algorithms and their parameters. In addition, this
architecture has been designed to serve as a foundation for embedding more powerful styles of learning
within an interactive vision system. By offering solutions to some of the nonconventional problems
in machine learning that arise, we have taken the first steps toward realizing this goal.

The user in our interactive system is a critical component in the automated learning process, even
though he is not necessarily aware of this role. The user provides the performance evaluation and
correction feedback that is necessary for directed learning and avoids the need for a computationally
infeasible trial-and-error approach. Our system takes advantage of the human review of its results
to determine how successful it has been, to reinforce its successes;‘and to take corrective action for

its failures.

Our approach is based on the use of contextual information. We define it as any information
that may characterize the task or input data given to a vision process. Thus, an image is part of the
contextual information, as is the camera geometry, a priori scene knowledge, and the purpose of image
analysis. Many authors have used contextual information in image-understanding systems [MHM85,
DCB*89, CGHS93, Str93], but few have made the use of context a way to improve the performance
of systems through experience and learning.

We have implemented and tested an initial design and demonstrated successful performance.
Our experiments involved the extraction of 70 features in four images of two different sites, and
encompassed 195 trials. These results are presented in graphical form where the effects of successful
learning are clearly apparent. '

In the next section, we present in detail our approach to supervised learning. We see what
information is stored in the data base and how parameters are retrieved using past experiences. We

also describe the updating process that is critical to continuing improvement of the performance of
the system. .

In Section 3 and the Appendix, we describe the snake algorithm that we use to demonstrate
our system’s effectiveness. Snakes [KWT88, TWK87, FL90] are a very powerful technique for edge
detection that integrate information from both photometric and geometric models in an optimization
framework. More specifically, we show how our implementation allows the various parameters to be
context-specific as opposed to image-specific.

Finally, in Section 4, we present some experimental results; we show how our system makes the
use of vision algorithms easier by reducing the required user expertise while improving his efficiency.

2 Approach

Let A(D,P) be a process that takes two kinds of information as input, data represented by a vector
D (which includes specification of the task), and parameters represented by a vector P. A gives a
solution S as output. Suppose we have calculated some context information about the task and da.ta
represented by a context vector C.

Consider as an example that A(D,P) is a segmentation process that starts from the trivial
segmentation (one pixel is one region) and merges t#6 regions if the difference between the two
grey-level means of the regions is less than a given threshold s. Input data to this particular process
is the image I (D = ([)), and P = (s), the threshold that has to be set depending on the image.
One element of context vector C could be the mean of gray level dl.spanty between two neighboring
pixels calculated on every pixel in I.

The basic problem addressed here is to set the values of the parameter vector P knowing the
values of the context vector C. The setting should be optimal in the sense that it gives the expected
solution S for process A(D,P). An important consideration is that context and parameter vector
elements can be either categorical or numerical, and that one (or more) of the context elements may
be unknown.

‘Note that this problem is not a classic problem of supervised classification where some objects O
(parameters) are to be put in one of the classes w;, ...w, (parameter values) knowing some measure
vectors x (context vector). There are two major differences. The first one is that the measure vectors
may contain some categorical values or even the value “unknown”. The second is that classification
generally assumes that there is a fixed number of classes, but here, parameters can be continuous
variables?.

In practice, however, these would be a finite set because of discretization.

This problem is also not a classic problem of interpolation, where we would have to find y
(parameter vector) knowing that y = F(x) (x.context vector), where X can be compared to some
other context vectors (xi,...,Xn) for which we know the associated parameter vectors (y1,...,¥m)-
The main reason is that contextual elements can be categorical and an order relation may not exist
between context values. Perhaps more importantly, in both of the above classical problems, the
mapping function is known (at least implicitly). In our formulation, a new task can always be
introduced, which could alter an existing mapping or even reverse a previous one.

The existence of these two attributes has necessitated the creation of a nonconventional approach
to machine learning.

2.1 General Scheme

A primary performance criterion for a practical system for interactive feature extraction is efficiency.
Efficiency is the ability to generate a good result in a previously encountered situation while avoiding
the repetition of past errors. Thus, it is necessary for the system to keep a record of its successes
and failures. The best way to evaluate the system output (and so to determine success or failure) is
to ask the user to do it. While this task is generally easy for him, it greatly improves the learning
ability of the system.

. ;ﬁdd

\\ rrieval

P

adjusment

Figure 1: General scheme

From these considerations, we derive the general scheme for our system, depicted in Figure 1.
Given a context element vector C, a data base (DB) where past experiences are stored is used to
retrieve a parameter vector P. When P is calculated, the process A(D,P) is applied and the user
checks the validity of the result. If the result S is acceptable, P is stored in order to update the
parameter value probabilities in the data base. If A has failed, the user has three adjustment options :
the first one is to manually modify the parameters and to apply A again until it succeeds. The second
option is to manually modify the result S so it becomes reasonably good. In these first two cases, C,
P, and & are stored to update the data base. This phase is called the learning update, and is usually
performed after the session. Finally, the third option for the user is to modify some aspects of the
input data D. In such a case, a new context vector is calculated and the procedure starts all over
again. In this way, the system is able to improve its performance over time, as the likelihood that
the system encounters a context which is similar to one in which it -has successfully accomplished its
task increases monotonically.

This architecture can serve as the foundation of a practical system for cartographic feature ex-
traction, while affording a path to the creation of a vision system with very powerful and novel
constructs for learning. Our current implementation provides limited parameter learning abilities
already. More ambitious learning techniques will be installed in the future by replacing the retrieval
and update modules in Figure 1 with more capable ones.

In the following sections we describe our current approach to the retrieval of P using the data
base, and the update of the data base from new expertences.

2.2 Data Base

The data base is used as a “memory” that contains the past experiences of the system, that is,
encountered contexts and associated parameters. Appropriate parameter settings for newly encoun-
tered contexts are computed by comparing the current context to previously stored experiences.
Particular attention has been paid to defining what information has to be stored, and what the
appropriate representation for this information should be.

It is important to note that neither context elements nor parameters can be treated separately
from each other — they have to be considered as associated entities. Some parameters are going to
be sensitive to more than one context element. Thus, considering context elements separately in the
data base is difficult to manage, since they may be associated with some contradictory parameter
values or parameter vectors. It is also unreasonable to consider parameters independently (in the
data base); they are usually not independent, and this could also lead to inconsistent parameter
values. Thus the best solution is to consider each context vector as an entry in the data base, and
to associate one (or more) parameter vectors with it.

|

Another important point is that there is no bijection between a context vector C and a parameter
vector P, as there may be several P suitable for a unique C. As an example, consider that the process
A is a car braking system, taking as input a parameter P, proportional to the braking force. Suppose
we have to adjust this parameter from two context elements, the distance Dt between the car and
a traffic light, and the color Co of the traffic light. If Co = red, the higher the D¢, the more
possibilities there are for P, values, depending on whether or not one wants to slow down rapidly.
In this example, there is no unique value for P, but rather a range of values. This suggests keeping
several possible parameter vectors for one context in the data base.

However, it is important to be able to rank these parameter vectors, since some could be spurious.
The best parameter vectors (those that have performed successfully in the past) should be tried before

any others. Thus, we store the following information in our data base: . y

o Possible parameter vectors P for each encountered context element vector C. We call R(C)
the set of all P associated with C in the data base.

¢ Two numbers n*(P) and n~(P) associated with each P, telling how many times it as been
chosen as suitable (nt), or not (n7).

n*(P) and n~(P) are interesting for the following reasons :

- oY

o The set {Pg € R(C) | n*(Pg) = Pm}gzzé)n"'(P)} allows us to find the best parameter vectors
€

for the given context C. Pl

o nt(P)/n~(P) gives an estimate of the reliability of the parameter estimation for the given
context C. '

o If n*(P) << n~(P), it can be deduced that P is a spurious vector and that it should be
removed from the data base.

o Let ¢7(C)= >_ n¥(P),and ¢~(C) = Z n~(P).
e PeR(C) PeR(C) .
"If $*(C) << ¢~(C), then the expectation that the algorithm succeeds is very low, and it can -

be deduced that the algorithm is not applicable in the particular context C.

" Context elements can be categorical variables as well as continuous variables. Because of storage
capacity, every value of a continuous variable context element cannot be stored in the data base.
One way to handle this problem is to introduce a discretization step ds. Consider a context vector
(Chiys -y Cjkty s Cmsim) tO be introduced in the data base. Suppose that the jth context element is

a continuous variable, and that the data base already contains an entry (Cliiyy ooes Cky ooey Cmiin). If
lcih — cjk| > ds we will consider (cy,, ..., Cafy ooy Cmiin) S & Dew entry in the data base; otherwise,
we will update the data base using entry (cii;y ey Ciky eoey Crmim)-

If the discretization step is too small, the learning process will be longer, because it will be harder
to find the same context vector more than once. The storage capacity will have to be larger too,
to store additional cases. Finally, there will be redundancy in the data base, since some different
context vectors may have the same set of suitable parameters.

On the other hand, if the discretization step is too high, some parameters associated with one
context vector won’t be suitable for every case having this context. The number of spurious vectors
will be high, and efficiency will suffer.

In the current implementation of the system, the discretization stéps have been set manually to
what we think are reasonable values. Note that establishing the discretization interval for parameters
is much easier because an expert usually knows what the minimum steps are that will impart a
difference in the output of the process. Moreover, from previous considerations, we can see that, by
checking the degree of redundant parameter vectors and spurious parameter vectors in the data base,
discretization steps could be adjusted automatically.

Designing a more competent similarity metric than euclidean distance in context space, and a
more effective discretization procedure than fixed distance thresholding, are important problems
that we hope to address in the future through learning mechanisms rather than a priori design. For
now, our straightforward solutions to these problems allows us to concentrate on other aspects of
the design, such as the representation of context elements, thel desxgn of the data base, and the
accommodation of both numerical and categorical data. §

JRES g

‘
f

2.3 Parameter Vector Selection

The parameter vector selection is a retrieval process. From a new context vector C, the most suitable
parameter vectors for C have to be retrieved from the data base. To do so, the context vector from
the data base that is equal to or nearest to the new context vector C has to be found first, and then
the best parameters associated with this nearest entry have to be retrieved.

The elements in the context vector C constitute a vocabulary for describing the current extraction
context. Ideally, the system would be able to modify or augment this vocabulary with elements that
are automatically determined to be critical to the selection of algorithms and parameters. Our
current implementation is restricted to a predefined set of context elements.

2.3.1 Finding the nearest context in the data base

A new context vector C is presented to the system. If C is present in the data base, then the retrieval
is immediate. In this case and if more than one parameter vector is associated with C in the data
base, then the most suitable parameter vector(s) (as defined by n*(P) and n~(P)) is (are) provided.

The real problem is to deal with context vectors presented to the system when no identical vector
is present in the data base. To soive this problem, we look for the nearest context vector present
in the data base. This implies finding a similarity measure to compare the new context vector with
context vectors of the data base. Many similarity measures can be found in the literature, such as
the inner product, the cosine measure, or the dice measure [WWY92]. All these similarity measures
assume real valued vectors. Because vectors in the data base are not necessarily real valued, Using a
generic similarity measure is questionable because context vectors in the data base are not necessarily
real valued and similarity measures for categorical context elements may have to be ad hoc.

A heuristic solution to this problem is to find the nearest context vectors in the sense of the
number of equal context values. In this case, the set of context vectors of the data base that have a
minimum number of values different from the values of C has to be found. Let us call this set N(C).

Let V,,...,V, be p sets of vectors. We define the minimal intersection of Vi,...,V, as the

function (Vnin(VA1, ..., ;) that returns every vector of Vi, ..., V, that minimize the number of different
component values. There may be more than one vector from each set in the minimal intersection.
Cete

To better understand the previous definition, consider the following example :

;|
Let Vi =((1 false 0.1 low), (1 true 0.3 high), (1 maybe0.1 low))
Y Va=((1true 0.1 low), (2 false 0.3 high))

Then Mmin(Va,V2) = (((1 false 0.1 low), (1 maybe 0.1 low)), ({1 true 0.1 low)))

The number of differences in the minimal intersection of the previous example is 1 (the second
vector element). We call this number the rank of the minimal intersection.

F inding elements of N(C) can be achieved using the minimal intersection between C and each
context vector of the data base, by selecting vectors that minimize the rank of this minimal inter-

section.

Let s be the number of entries in the data base, CS = {C} and CS; = {C;}, ¢ < s be the
sets containing, respectively, only the new context C and only the tth element of the data base. Let
Umin; be the rank of the minimal intersection between C'S; and CS, and vemin = rjn(ifx(vm,-n,,-); then

10

Vi<s, C; C N(C) ifand only if vpmuni = VCmin. (1)

Any system that is to base its future actions on prior experiences must have a mechanism for
finding matching contexts within its repository of historical information. Since it is unreasonable to
expect that the context of every task will have already been encountered, the mechanism must be
able to identify experiences that are relevant to the context of the present task. The intermingling
of both- categorical and numerical context elements has forced us to develop a new mechanism for
finding relevant contexts in the database of prior experiences. Equation 1 defines our solution to this
nonconventional problem.

2.3.2 Parameter vector retrieval

Since we have found the entries nearest to C in the data base, we now have to find which parameter
vectors associated with these nearest entries are the most suitable. Parameter vectors associated
with each element of N(C) can be very different, and may not all be acceptable for the new context.

The basic solution is to provide every parameter vector associated with every element of N(C),
that is the union of all possible parameter vectors, and to let the user decide which one is the most

appropriate.
S qd -

However, there should be a better solution based on the intersection of the selected parameter
vectors. If this intersection is not empty, it means that some parameter vectors acceptable for C
may also belong to it. Thus, parameter vectors belonging to this jintersection can be provided as
most suitable for C. If there is no intersection, we can reason the same way in terms of “minimal
intersection.” In this case, let PS,,...,PS, be the sets of parameter vectors associated with each
element of N(C). The minimal intersection of PSi, ..., PS, provides a set of potentially acceptable
parameter vectors in the new context C.

2.4 Data Base Update

Upddting the data base is very important to improving the performance of the system. This process
is performed at the end of a session. Thus, running time is not important, while performance is.
During the session, update data are accumulated in a file. This file contains all resulting information
of a session, that is the success as well as the failure of the system to provide correct parameters.
Every attempt to provide a parameter vector is analyzed. If the attempt was a success, that is,
if the solution S returned by the process A(D,P) was really the one expected by the user, the
automatically retrieved parameter(s), and the manually set parameters (in the case where the user

11

had to set P manually), are incorporated into the data base. For each added parameter vector P,
the value of n*(P) or n~(P) is adjusted.

On the contrary, if the attempt was a failure, that is, if the user had to manually find the solution
S that he wanted, then a search process is run to find a set of parameter vectors that best reproduce
the given correct solution. The context vector and the best parameter vector(s) are then added to
the data base.

Because the data base update is performed off-line, it can be performed continuously whenever
the system is not otherwise engaged. We have not yet implemented it, but our design allows for this
time to be spent finding new context elements that better resolve the selection of algorithms and
parameters. This facility would constitute a very powerful capacity for the discovery of new concepts
- a challenging problem in machine learning.

3 Snakes

The automated procedure for parameter settiﬁg that we have described is, in theory, suitable for
setting the parameters of virtually any algorithm. For purposes of evaluation, we have performed
our experimentation using one class of feature extraction algorithms — an optimization approach

known as snakes.
g9

Snakes were originated by Terzopoulos, Kass, and Witkin [KWT88, TWK87] and have since
given rise to a large body of literature. In the original implementation, the parameters were chosen
interactively, and potentially had to be changed from image to ithage. In our own implementation
[FL90], which is further described in the appendix, those parameters are computed automatically

and become amenable to context-specific setting.

A 2-D snake is treated as a polygonal curve C defined by a set S containing n equidistant vertices
S= {(1‘,’ y,-), 1= 1,...,n}

that can deform itself to optimize an objective function £(C).

Formally we can write the energy £(C) that the snake minimizes as a weighted sum of the form
EC) = _N&(C)

where the magnitudes of the & depend on the specific radiometry and geometry of the particular
scene under consideration and are not necessarily commensurate. In order to determine the values
of the \; weights in a context-specific way as opposed to an image-specific one, we have found it
necessary to normalize out those influences. The dynamics of the optimization are controlled by

12

the gradient of the objective function (Appendix A, Equation 7). We have therefore found that an
effective way to achieve this result is to specify-a set of normalized weights A! such that

Yo dNi=1.

1<i<n

The A define the relative influences of the various components, and we use them to compute the A;
as follows: N
\ = —_4.—"'—"
0
I VE(S) ||

where S° is the estimate at the start of each optimization step. In this way we ensure that the
contribution of each & term is roughly proportional to the corresponding X! indepedently of the
specific image or curve being considered.

Table 1 lists the parameters of the snake algorithm that we use to test the learning capability
of our system. In practice, there are a few more, like those that define the rate of increase of the
viscosity or the stopping conditions. However, since the algorithm is not very sensitive to these, we
simply fix them once and for all. The categorical parameters determine the type of snake to be used,
the presence or absence of a smoothing term, the optimization procedure to be used in the absence
of a smoothing term, and whether or not the endpoints of the snake ought to be fixed.

e

| Categorical parameters |

Type of snake Snakes can model smooth, polygona} or ribbon curves. -
Fixed endpoints The endpoints of the snake can be éi‘ﬁ"hex:_ fixed or not.
| Numerical parameters _ 3 ~ |
Gaussian smoothing Size of the gaussian mask used to compute image gradients
Initial step size A,, pixel step size of Equation 8 used to compute the initial viscosity
Stick length Initial intervertex spacing of the snake, in pixels
Smoothness constraint p weight of the deformation component, Equation 5
Width constraint w weight of the width component, Equation 10
Curvature/tension ratio Relative contribution of tension and curvature, Equations 5 and 9

Table 1: Snake categorical and numerical control parameters. These parameters and related equa-
tions are defined in the Appendix.

13

4 Experimental Results: Learning and Selecting Snake
Parameters

We have applied our approach to learning the parameters described in Teble 1, by implementing the
architecture in the RADIUS Common Development Environment (RCDE) [MWQ*91].

First, let us illustrate the general scheme of our system on the following example. Suppose the
user’s task is to delineate the ridge present in the two images depicted in Figure 2.a. The user
sketches the 3-D curve in the left image of Figure 2.b. The camera models and digital terrain model
associated with the image site is used to draw the curve in the right image of (Figure 2.b).

(b)

Figure 2: (a) Two images from one site used in our tests. (b) 3-D seed curve defined in two views

14

Figure 3: Context menus: global context elements (left), site-specific context elements (right)

Then the user reviews contextual information (Figure 3). There are two menus, corresponding
respectively to global image context elements and curve-specific context elements. We have eight
global context elements, Look Angle giving the look angle of the sensor, GSD giving the resolution,
Sensor which indicates the type of the sensor, Element type, Site type, Season Characteristics which
point out some season particularity (snow or rain), [llumination, and Sun Angle which is important
for predicting shadows. We also have eight context elements for characterizing local contextual
information : Task which indicates the class of object £&"be extracted, Seed accuracy which indicates
the distance between the seed curve and the expected solution, Desired accuracy which indicates
whether or not the user wants the optimized curve to strictly follows the contours of the image, Site
type, Material type, Terrain elevation, Seed min angle which is thé: smallest computed angle between
two consecutives lines in the seed curve, and Gradient mean which is the average of the intensity
gradient around the seed curve.

These sixteen context elements form the context vector C. Most of the items are calculated
automnatically. The user can choose to not provide every item — unknown context elements are
ignored. The Parameter Selection button returns a selection of parameters based on the nearest
context vector present in the data base. The user can select one of the provided parameter sets and
invoke the algorithm. If the user can’t find any parameter sets giving an acceptable optimized curve,
he can adjust the solution manually, set his own parameters, or modify the initial seed curve (thereby
setting a new context). When the user finds an acceptable solution, the initial curve, optimized curve,
and parameters are saved to update the data base (note that this is completely transparent to the
user). The optimized curve is presented in Figure 4.

Figure 4: Snake-opimized 3-D curve

Figure 5 and 6 show sub-images of the two sites we used in our tests. A site consists of several
images, generally aerial images of dimensions greater than 1000 x 1000 pixels. The two test sites
are very different from each other: the first one is a mountainous rural area with several industrial
facilities (Figure 3.a), while the second is an urban area in flat terrain (Figure 6.a). Figures 5.b
and 6.b show curves used as seeds in the snake optimization process. Figures 5.c and 6.c show the
results of the optimization. Although the building boundaries presented in Figures 6.b and ¢ appear
very similar, careful inspection will reveal that there are significant differences between the two —
the optimized version is much more precise than the sketch. Finally Figures 5.d and 6.d show the
parameters provided by the system. The Smoothness”constraint for the ribbon of the first site is
relatively small because of the relatively high curvature of the ribbon. This aspect is captured by
the context element Seed min angle. Gaussian smoothing needs ta be smaller for curve of the second
site because of the relatively high edge density around the curve,: and more particularly, the presence
of shadow. This aspect is captured by the Gradient mean context element.

Testing the efficiency of our system with the snake algorithm involves repeating the following
steps: define a curve, query the system for appropriate parameters, evaluate the result, and adjust
it, if necessary, as described in Section 2.1. As the data base grows, required adjustments should be
fewer in number, and the expertise required of the user should decrease.

Two major problems arise with respect to maintaining test objectivity. The first one is the choice
of the image curves to optimize and the order in which they are optimized. The best solution would
be to define all the curves we want to test, and present them randomly to the user. Because this is not
feasible in practice, we adopt the strategy of selecting the curves and processing them sequentially.

16

| Parameters | Values |
Type of snake ribbon
Fixed endpoints true
Gaussian smb'oihing 2
Initial step size 2.0
Stick length 10
Smoothness constraint | 0.6
Width constraint 0.5
Curvature/tension ratio | 1.0

()

(d)

Figure 5. (a) Example of images of the first test site. (b) Ribbon seed curve.
(c) Snake-opimized ribbon curve. (d) Provided parameters

| Parameters | Values J

Type of snake Polygonal
Fixed endpoint?ss’ not used
Gaussian smodf:hing 1

Initial step size 2.0

Stick length not used
Smoothness constraint | not used
Width constraint not used
Curvature/tension ratio | not used

(d)

Figure 6: (a) Example of images of the second test site. (b) Closed 2-D curve.
(c) Snake-opimized 2-D curve. (d) Provided parameters

100

0+

Figure 7: Cumulative number of manual settings of parameters

The second problem is the evaluation of the results. Some results may be acceptable for one user
but not for another. The present paper describes an on-going study, and determining how well the
learned result will carry over from one user to another has not yet been attempted. All the test

results presented below come from a single user.
-G -
To show the effectiveness of our system we plot the cumulative number of manual parameter

settings as a function of the number of tests (Figure 7). We can see that for both sites, system
reactivity is similar. There is a continuous decrease in the slope of each curve. This decrease is due
to the effect of successfully learning suitable parameter a.ssxgnrnents and represents an improvement
in efficiency. The frequency of manual parameter setting that is required clearly decreases and tends
toward zero, which is the theoretical ideal. The slope decrease also means that the user needs fewer
trials to achieve his goal.

The third curve shows the hypothetical number of manual parameter settings for a user who does
not use the learning module, but simply sets the parameters himself before each optimization. This
curve fits the two others when the system starts to learn, and then tends to an assymptotic line with
slope-2.0, indicating 2 mean of two manual settings per curve to optimize. The difference between
the amount of hypothetical manual parameter setting and the results obtained by a user employing
the learning process indicates the improvement in efficiency provided by the learning module. From
the graph it is apparent that the improvement increases as the system gains experience with the site.

Without the assistance of the parameter learning module, a novice user can require 10 or more
invocations of the snake algorithm before he attains a suitable parameter setting for each seed curve
to be optimized. The capacity of the learning module to reduce the required number of invocations

19

(to less than one per task in our experiments) represents a significant improvement in the efficiency
with which snake algorithms can be employed in an interactive system.

5 Conclusion

This paper grew out of an attempt to solve a practical and important problem in interactive scene
analysts: the automated selection of feature extraction algorithms and their parameters, as a function
of image content and task requirements. An abstract characterization of this problem is that of
mapping a multidimensional context space (representing image data and task specification) into a
multidimensional algorithm-selection space (the extraction algorithms and their-parameter settings).
It was immediately apparent that an analytic design was infeasible. Two of the many reasons are:

¢ We don’t have effective ways of analytically describing image content.

o The range of possible tasks and image types is essentially infinite — no a priori design can
hope to subsume all possible situations.

A “learning”‘ approach appeared to be the only alternative.

On the other hand, we are not addressing a classical problem in machine learning where some
input vector of attribute measurements is mapped into one of a relatively small number of categories.
As noted above, the number of distinct points in the algorithm-selection space is (at least in theory)
infinite. Further, simple interpolation schemes can’t deal with th:éijq;‘xpected noncontinuous categor-
ical variables. Thus, rather than some form of “parameter learning”, we must solve a problem in
associative retrieval where the associations must be learned and are sub ject to change over time.

The fact that the learning system is embedded in an interactive system (to deal with continuous
change) offers both a challenge and an opportunity. The human operator must be aided rather than
burdened by the presence of the learning system but can provide directed feedback about system
performance.

Thus, the primary contribution of this paper lies in the structuring of an interactive, embedded
learning system for an important problem in the design of computer vision systems — the automated
selection of feature extraction algorithms and their parameters, as a function of image content,
collateral data, and task requirements. The framework we have described lays the foundation for
new learning mechanisms to be developed and tested — we have taken the first steps toward applying
machine learning in a nonconventional learning context. We have also offered solutions to some of
the subproblems that arise: how to define similarity of context vectors in which elements are both
numerical and categorical; how to choose among the multiple parameter vectors that might be

20

4

retrieved from the data base, and how to update the data base with experience gained through
continual use of the feature extraction system.

We have implemented and tested an initial design and demonstrated successful performance
within a cartographic modeling domain using snake algorithms. Future work remains to establish
the utility of this framework to other feature extraction tasks, to clarify the relation between this
approach and existing techniques in associative retrieval and machine learning, and to quantify the
benefits in a realistic, operational setting.

A Snakes

Here we provide a mathematically precise account of the snake algorithms that we have employed
within our system for learning the parameters of vision algorithms.

A.1 2-D Linear Snakes

A 2-D snake is treated as a polygonal curve C defined by a set S containing n equidistant vertices
S = {(z; yi), i?dl.:...,n} (2)

that can deform itself to maximize the average edge strength along the curve G(C):
1
6(C) =157 [IVTE(s)I s, 3)

where / represents the image gray levels, s is the arc length of C, f(s) is a vector function mapping
the arc length s to points (z,y) in the image, and |C| is the length of C. In practice, G(C) is
computed by sampling the polygonal segments of the curve at regular intervals, looking up the
gradient values [VZI(f(s))| in precomputed gradient images, and summing them up. The gradient
images are computed by gaussian smoothing the original image and taking the z and y derivatives
to be finite differences of neighboring pixels. We have shown [FL90] that the points along a curve
that maximizes G (C) are maxima of the gradient in the direction normal to the curve wherever the
curvature of the curve is small. Therefore, such a curve approximates edges well except at corners.
Unfortunately, G(C) is not convex functional and to perform the optimization, following Terzopoulos
et al., we minimize an energy £C) that is a weighted difference of a regularization term £p(C) and

of G(C):
EC) = Apép(C) - AsG(C) (4)

21

Ep(C) = my (zi—zic1)+ (yi = yin)?

1

+ p2) (22— Tiy — zin)? + (290 — yies — Yis1)® (5)

t

The first term of £p approximates the curve’s tension and the second term approximates the sum of
the square of the curvatures, assuming that the vertices are roughly equidistant. In addition, when
starting, as we do, with regularly spaced vertices, this second term tends to maintain that regularity.
To perform the optimization we could use the steepest or conjugate gradient, but it would be slow
for curves with large numbers of vertices. Instead, it has proven much more effective to embed the
curve in a viscous medium and solve the equation of the dynamics

o dS

‘5‘5'; - C!-(E- = 0, 3 (6)
., 0 0fp 0G
with — = — -2

as o5 35’

where € is the energy of Equation 4, o the viscosity of the medium, and S the state vector of Equation
2 that defines the current position of the curve. Since the deformation energy £p in Equation 5 is
quadratic, its derivative with respect to S is linear and therefore Equation 6 can be rewritten as

o€
KSS: + Q(Sg - St—l) = - 5‘5 o
o 9€
= (Ks+al)S, = a8, - — (7)
t t—1 a'sl .?'-l
h o

where _aé e
65 = Hs50,

and K is a sparse matrix. Note that the derivatives of £p with respect to z and y are decoupled so
that we can rewrite Equation 7 as a set of two differential equations in the two spatial coordinates

oG
(K + QI)Xg = C!Xg-l + 5} s
oG
(K+eal)Y, = oY, + 37 v

where K is a pentadiagonal matrix, and X and Y are the vectors of the z and y vertex coordinates.
Because K is pentadiagonal, the solution to this set of equations can be computed efficiently in
O(n) time using LU decomposition and backsubstitution. Note that the LU decomposition need be

recomputed only when « changes.

22

In practice a is computed in the following manner. We start with an initial step size A, expressed
in pixels, and use the following formula to compute the viscosity:

2n {0
\2,,— ﬁ' (8)

where n is the number of vertices. This ensures that the initial displacement of each vertex is on
the average of magnitude A,. Because of the non linear term, we must verify that the energy has
decreased from one iteration to the next. If, instead, the energy has increased, the curve is reset to
its previous position, the step size is decreased, and the viscosity recomputed accordingly. This is
repeated until the step size becomes less than some threshold value. In most cases, because of the
presence of the linear term that propagates constraints along the whole curve in one iteration, it
takes only a small number of iterations to optimize the initial curve.

The snakes described above have proved very effective at modelling smooth curves. Some objects,
however, such as buildings, are best modeled as polygons with sharp corners. They can be handled in
this context by completely turning off the smoothness term. Such objects typically have a relatively

small number of corners, and the optimization is performed using a standard optimization technique.

A.2 3-D Linear Snakes

Snakes can be naturally extented to three dimensions, by redefining C as a 3-D curve with n equidis-
tant vertices S = {(z; y; z:)}, 1 = 1,...,n} and considering its projections in a number of images for
which we have accurate camera models. The average edge strength G(C) of Equation 3 becomes the
sum of the average edge strengths along the projection of the curve in the images under consideration,
and the regularization term of Equation 5 becomes i

Ep(C) = w Y (zi=zic1)? + (yi — yic1)? + (i — zicy)? (9)

13

+ o2 (22— Ticy = zig)' + (2 — Yie1 — vis1)® + (220 = zicy — zi41)?

13

Since the derivatives of £p with respect to z, y, and z are still decoupled, we can rewrite Equation
7 as a set of three differential equations in the three spatial coordinates:

og
(K +al)X, = aX,.1 + X ‘.
ag
(K+al)Y, = oY, + £Y% -
oG
(K+al)Z, = aZyy + 5z -

23

where XY, and Z are the vectors of the z,y, and z vertex coordinates.

The only major difference with the 2-D case is the use of the images’ camera models. In practice,
G(C) is computed by summing gradient values along the line segments linking the vertices’ projections.
These projections, and their derivatives, are computed from the state vector S using the camera
models. Similarly, to compute the viscosity, we use the camera models to transiate the average
initial step A,, a number of pixels, into a step A, expressed in world units and use the latter in
Equation 8.

A.3 Ribbons

2-D snakes can also be extended to describe ribbon-like objects such as roads in aerial images. A
ribbon snake is implemented as a polygonal curve forming the center of the road. Associated with
each vertex 1 of this curve is a width w; that defines the two curves that are the candidate road
boundaries. The state vector S becomes the vector S = {(ziyiwi)}, i=1,...,n} and the average
edge strength the sum of the edge strengths along the two boundary curves. Since the width of roads
tends to vary gradually, we add an additional energy term of the form

Ew(C) = Z(w; —wi)? (10)
0w
'a—W' = LW?-'-s"d

where W is the vector of the vertices’ widths and L a tridiagonal matrix. The total energy can then
be written as ol

EC) = ApEp(C) + AwEw (C) — AcG(C)

and at each iteration the system must solve the three differential equations:

oG
(K+a)X, = aXii+ X .
oG
(K+eal)Y, = oY, + £% v
aG
(K-i- QI)W: = aW,_; + 3—W- ..

2-D ribbons can be turned into 3-D ones in exactly the same way 2-D snakes are turned into
3-D ones. The state vector S becomes the vector S = {(z; yi 2 w;)}, 1 = 1,...,n} and at each
iteration the system must solve four differential equations, one for each coordinate.

24

References

[CGHS93)

[DCB+89]
(FL90] ~
(HQ8s]

(KWTs8)]
[MHMS5)

[MWQ+91]
[SF91]

(Str92]
[Stro3]

[TWKS7)

[(WWYo2]

V. Clement, G. Giraudon, S. Houieﬂé, and F. Sandakly. Interpretation of remotely sensed
images in a context of multi sensor fusion using a multi-specialist architecture. JEEE Trans. on
Geoscience and Remote Sensing, 1993.

B.A. Draper, R.T. Collins, J. Brolio, A. R. Hanson, and E.M. Ris;ema.n. The schema system.
International Journal of Computer Vision, 3(2):209-250, 1989.

P. Fua and Y.G. Leclerc. Model driven edge detection. Machine Vision and Applications,
3:45-56, 1990.

A.J. Hanson and L. Quam. Overview of the sri cartographic modeling environment. In DARPA
Workshop on Image Understanding, pages 576-582, April 1988,

M. Kass, A. Witkin, and D. Terzopoulos. Snakes: Active contour models. International Journal
of Computer Vision, 1(4):321-331, 1988.

D. M. McKeown, W. A. Harvey, and J. McDermott. Rule-based interpretation of aerial imagery.
IEEE Trans. on Pattern Analysis and Machine Intelligence, 7(5):570~585, September 1985.

J.L. Mundy, R. Welty, L. Quam, T. Strat, W. Bremmer, M. Horwedel, D. Hackett, and A. Hoogs.
The radius common development environment. In Proc. of AIPR, Washington, DC, Qctober
1991. (also in Proc. of DARPA Image Understanding Workshop, San Diego, California, 1992.).

- LA)

T. M. Strat and M. A. Fischler. Context-based vision: Recognizing objects using both 2d and
3d imagery. IEEE Trans. on Pattern Analysis and Machine Intelligence, 13(10):1050-1063,
October 1991. Ly

i
vy

Thomas M. Strat. Natural Object Recognition. Springer-Veﬂég, New York, 1992.

Thomas M. Strat. Employing contextual information in computer vision. In DARPA Workshop
on Image Understanding, 1993.

D. Terzopoulos, A. Witkin, and M. Kass. Symmetry-seeking models and 3D object reconstruc-
tion. International Journal of Computer Vision, 1:211-221, 1987.

Z.W. Wang, S.K.M. Wong, and Y.Y. Yao. An analysis of vector space models based on computa-
tional geometry. In ACM SIGIR Conf. on Research and Development in Information Retrieval,
pages 152-160, June 1992,

25

